Уровень интенсивности в дб формула

Уровень интенсивности в дб формула

Очень часто новички сталкивается с таким понятием, как децибел. Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Что такое децибел?

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой — электрической, электромагнитной, акустической, механической, — важно лишь, чтобы обе величины были выражены в одинаковых единицах — ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 – 1922) – американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и “Bell Laboratories”. Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый “bell”. Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

P1 – мощность до усиления, Вт

P2 – мощность после усиления или ослабления, Вт

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

NдБ – усиление, либо ослабление мощности в децибелах

P1 – мощность до усиления, Вт

P2 – мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком “плюс”, если P2 > P1 (усиление сигнала) и со знаком “минус”, если P2

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным – проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:

NдБ – усиление, либо ослабление мощности в децибелах

U1 – это напряжение до усиления, В

U2 – напряжение после усиления, В

I2 – сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно – он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я – нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ – сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов. Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать , что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот.

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.

Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника – это чисто физическое явление, то и децибелы не обошли ее стороной.

Децибелы и АЧХ усилителя

Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усилитель усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:

Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:

На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.

Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)

Нас сейчас интересует наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Читайте также:  Программа для соединения музыки и голоса

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)

Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ

То есть получается за одну декаду у нас сигнал увеличился с -44 до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.

Что еще измеряют в децибелах?

Также очень часто в дБ выражают отношение сигнал-шум ( signal-to-noise ratio , сокр. SNR)

Uc – это эффективное значение напряжения сигнала, В

Uш – эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) — 1 Нп

0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:

Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) – здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) – здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики – это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) – как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст – это 10 Вольт

От дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) – опорный уровень 1 милливольт.

dBuV (дБмкВ) – опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

Также на YouTube есть интересное видео о децибелах.

Теперь, когда есть представление о том, что такое децибелы, логарифмы, действия с логарифмами и логарифмические таблицы, можно приступить к рассмотрению правил сложения уровней интенсивности звуков.
Выше было дано определение уровню интенсивности (силы) звука и сказано, что эта величина измеряется в децибелах.
Было также дано разъяснение, что децибел не является физической величиной.
Децибел − это десятичный логарифм, т.е. величина чисто математическая, подчиняющаяся математическим (см. Раздел 2), а не физическим законам.
Поэтому при совместном действии двух и более источников звука (шума) результи­рующий уровень интенсивности (силы) звука не может быть выражен простым сложением их физических характеристик. Необходимо находить логарифмы суммы их интенсивности или квадратов их звуковых давлений, пользуясь формулой (30):

По данным Герхарда Молля, приведем несколько своеобразных при­меров такого сложения:

1дБ + 1дБ = 3дБ
70дБ + 70дБ = 73дБ
50дБ + 50дБ + 50дБ + 50дБ = 56дБ
Историческая справка
Gerhard Moll, (1785—1838) — проф. физики и HматематикиH, HдиректорH обсерватории в Утрехте. Работы его относятся преимущественно к электромагнетизму. Чаще цитируется его HисследованиеH, произведенное им в 1823 г. вместе с Van Beck над скоростью звука. Полученный ими результат для скорости звука в сухом воздухе при 0° — 332,25 м/c — считается одним из наиболее точных.

Эти примеры, хотя и очень наглядные, по форме записи не вполне правильные. Правильно записать их в виде формулы (31), имеющей большое практическое значение:

где,
Li − уровни звукового давления источников шума
n количество источников шума

Рассмотрим эту формулу более подробно применительно к результирующему уровню интенсивности звука двух источников звука, одновременно работающих c одинаковой интенсивностью (бел).
Для решения этой задачи введём некоторые обозначения:

L1 − уровень интенсивности звука первого источника звука (дБ).
L2 − уровень интенсивности звука второго источника звука (дБ).
Lрез − искомый результирующий уровень звука (дБ).
L1 = L2 = 10 (дБ) − основное условие задачи (дБ).
Руководствуясь формулой (31) мы вправе записать и решить логарифмическое уравнение:

Увеличение в два раза количества источников звука, имеющих одинаковый уровень звука,
приводит к повышению общего уровня интенсивности (силы) звука только на 3 дБ.
Это утверждение справедливо для любого уровня интенсивности звука.

Из этого утверждения и формулы (31) следует, что при n одинаковых источниках шума с уровнями Li результирующий уровень шума в децибелах (дБ) равен (формула 32):

Читайте также:  Выявление и исправление ошибок программного обеспечения

Lрез = Li + 10•lgn (32)
UПримеры

  • При одновременной работе четырех мотоцик­летных двигателей, уровень звукового давления каждого из которых составляет 80дБ, результирующий уровень составит 86дБ. После отъезда двух мотоциклов результирующий уровень звукового давления снизится всего на 3дБ и составит 83дБ.

Весьма интересным и, на первый взгляд, противоречивым является тот факт, что два одинаково громких источника звука при их совместном действии на слух ощущаются не так громко, как удвоен­ный по громкости одиночный источник звука.
Попробуем это объяснить, исходя из приведённых выше формул.
Мы определили, что при удвоении количества источников звука, работающих с одинаковой интенсивностью, результирующий уровень интенсивности увеличится только на 3 децибела (дБ).
Допустим у нас есть источник звука, работающий с уровнем интенсивности равным L1 (дБ).
Вопрос:
Как измениться уровень интенсивности звука этого источника (дБ), если увеличить интенсивность его звучания, например, в два раза.
Сокращённо условия задачи можно записать следующим образом:

I1 − первоначальная интенсивность источника звука.
P1− первоначальное звуковое давление.
I2 − изменённая интенсивность источника звука.
P2 − звуковое давление после изменения.
L1 − первоначальный уровень интенсивности звука источника звука (дБ).
L2 − изменённый уровень интенсивности звука источника звука (дБ).
I2 = 2I1− основное условие задачи

Поскольку мы имеем один источник звука воспользуемся пропорциональностью (21) и формулой (30), запишем:

UОтвет:U Уровень интенсивности звука при удвоении его интенсивности увеличивается на 12 дБ

При удвоении интенсивности звука одного источника результирующий уровень интенсивности его звука увеличивается на 12 дБ.

Сравним этот результат с результатом, который мы получили до этого.
Действительно, наглядно видно, что:

  • удвоение громкости звучания одного источника звука приводит к приросту результирующего уровня звука на 12 дБ
  • увеличение в два раза количества одинаково звучащих источников звука приводит к приросту результирующего уровня звука только на 3 дБ.

Изменение уровня интенсивности звука
в зависимости от звукового давления

В этой связи можно сделать вывод:

Несмотря на свою не физическую, а чисто математическую сущность, увеличение уровня интенсивности звука (дБ), абсолютно точно характеризует экспоненциальный прямолинейный рост интенсивности звука, в зависимости от роста звукового давления, реально воспринимаемого слухом человека (см. Рис 8)

Сложение уровней интенсивности звука
(с точностью ±0,5дБ)

UТаблица №6U

Разность между двумя уровнями
(дБ)

Прибавка к более высокому уровню
(дБ)

Очень часто новички сталкивается с таким понятием, как децибел. Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Что такое децибел?

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой — электрической, электромагнитной, акустической, механической, — важно лишь, чтобы обе величины были выражены в одинаковых единицах — ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 – 1922) – американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и “Bell Laboratories”. Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый “bell”. Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

P1 – мощность до усиления, Вт

P2 – мощность после усиления или ослабления, Вт

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

NдБ – усиление, либо ослабление мощности в децибелах

P1 – мощность до усиления, Вт

P2 – мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком “плюс”, если P2 > P1 (усиление сигнала) и со знаком “минус”, если P2

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным – проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:

NдБ – усиление, либо ослабление мощности в децибелах

U1 – это напряжение до усиления, В

U2 – напряжение после усиления, В

I2 – сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно – он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я – нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ – сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов. Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать , что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот.

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.

Читайте также:  Sony alpha dslr a230 kit

Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника – это чисто физическое явление, то и децибелы не обошли ее стороной.

Децибелы и АЧХ усилителя

Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усилитель усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:

Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:

На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.

Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)

Нас сейчас интересует наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)

Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ

То есть получается за одну декаду у нас сигнал увеличился с -44 до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.

Что еще измеряют в децибелах?

Также очень часто в дБ выражают отношение сигнал-шум ( signal-to-noise ratio , сокр. SNR)

Uc – это эффективное значение напряжения сигнала, В

Uш – эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) — 1 Нп

0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:

Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) – здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) – здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики – это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) – как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст – это 10 Вольт

От дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) – опорный уровень 1 милливольт.

dBuV (дБмкВ) – опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

Также на YouTube есть интересное видео о децибелах.

Ссылка на основную публикацию
Удалить программу через консоль
Операционная система Windows предлагает несколько способов для удаления установленных приложений и программ. Некоторые пользователи даже прибегают к использованию стороннего программного...
Тормозит wot что делать
Если лагает World Of Tanks World of Tanks – игровой проект, который рассчитан на большую аудиторию фанатов. Это означает, что...
Тормозит мобильный интернет мтс
Результаты поиска Пользование Симптомы При использовании мобильного интернета наблюдаются затруднения в доступе к интернет-ресурсам: слишком медленно происходят загрузка страниц в...
Удалить раздел жёсткого диска
Столкнулись с проблемой, что невозможно удалить EFI раздел с жёсткого диска в Windows? Не волнуйтесь данную проблему можно решить довольно...
Adblock detector