Умножение двух квадратных матриц

Умножение двух квадратных матриц

Свойства умножения матриц

  • (A · B) · C= A · (B · C) — произведение матриц ассоциативно;
  • ( z · A) · B= z · (A · B), где z — число;
  • A · (B + C) = A · B + A · C — произведение матриц дистрибутивно;
  • E n · A nm = A nm · E m = A nm — умножение на единичную матрицу;
  • A · B ≠ B · A — в общем случае произведение матриц не коммутативно.
  • Произведением двух матриц есть матрица, у которой столько строк, сколько их у левого сомножителя, и столько столбцов, сколько их у правого сомножителя.

Примеры задач на умножение матриц

С = A · B = 4 2 9 0 · 3 1 -3 4 = 6 12 27 9

Элементы матрицы C вычисляются следующим образом:

C = A · B = 2 1 -3 0 4 -1 · 5 -1 6 -3 0 7 = 7 -2 19 -15 3 -18 23 -4 17

Элементы матрицы C вычисляются следующим образом:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Используя этот онлайн калькулятор для умножения матриц, вы сможете очень просто и быстро найти произведение двух матриц.

Воспользовавшись онлайн калькулятором для умножения матриц, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения таких задач, а также закрепить пройденный материал.

Умножение матриц онлайн

Выберите необходимый вам размер матриц:

Введите значения Матриц:

Ввод данных в калькулятор для умножения матриц

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для умножения матриц

  • Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.

Теория. Умножение матриц.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

* Надо вспомнить из школьного курса операцию скалярного произведения двух векторов:

Читайте также:  Как удалить емейл на андроиде

Если даны две матрицы, одна размера , другая , то их размеры называются согласованными. Такие матрицы можно умножать друг на друга.

Операция умножения матриц определяется следующим образом. Мысленно разобьём первую матрицу на строки, вторую — на столбцы. Для каждой строки 1-й матрицы и каждого столлбца 2-й матрицы определено скалярное произведение. Всего существует всевозможных скалярных произведений строк (1-й матрицы) на столбцы (2-й матрицы). Именно из них и состоит произведение, это матрица размера

Примеры. = .

= .

Для матриц размеров и существуют оба произведения, и . Но произведение в примере выше оказалось бы не матрицей 2 порядка, а 3 порядка, то есть из 9 элементов.

Умножение квадратных матриц.

В этом случае размеры всегда согласованы, и произведение — это тоже матрица .

2 примера: = , =

обратите внимание, что даже для квадратных матриц далеко не всегда выполняется закон коммутативности, здесь .

Существует такая матрица, которая во множестве матриц обладает свойством, аналогичным 1 во множестве чисел, то есть . Но как мы видели только что, матрица из всех единиц этим свойством не обладает, а вот если единицы только по главной диагонали, а вокруг — нули, то такое свойство будет выполняться.

Единичная матрица Е. Строение: , при .

2-го порядка: , 3 порядка:

= и = .

(Аналог среди матриц первого порядка: число 1). Итак, .

Свойствадействий над матрицами:

Коммутативность:

Свойства, связанные с ассоциативностью:

1.

2.

3.

Свойства, связанные с дистрибутивностью:

1. 2.

3. 4.

Определители.

Пусть дана матрица 2 порядка. .

Определителем квадратной матрицы порядка 2 называется такое число:

(произведение элементов главной диагонали, минус произведение элементов побочной диагонали).

Геометрический смысл: модуль определителя равен площади параллелограмма, сторонами которого являются 2 вектора, координаты которых расположены по строкам (либо столбцам) матрицы.

Если бы мы просто вычисляли площадь параллелограмма, построенного на векторах (2,1) и (1,2), где ни один вектор не расположен вдоль координатной оси, то понадобилось бы найти длину основания, затем высоту. А с помощью определителя, S вычисляется гораздо короче.

Примеры. .

поменяем местами строки, изменится знак:

.

Заметим, что при введении определителя, умножаемые элементы всегда расположены так, что 2 из них не находятся в одной строке или в одном столбце. Кстати, кроме главной и побочной диагонали, в матрице порядка 2 таких наборов элементов больше нет.

Читайте также:  Huawei erecovery как выйти

Если расположить первые n натуральных чисел 1,2,3. n в некотором порядке, возможно, не по возрастанию, а перепутать каким-то образом, то они образуют так называемую перестановку из n чисел. Каждый набор элементов, которые мы перемножаем в определителе 2 порядка, можно задать с помощью перестановки: главная диагональ (12) побочная диагональ (21). Большой прямоугольник в 1 строке, выбираем из 1 столбца, а когда он спустился во 2 строку, там из 2 столбца. Как на схеме:

таким путём мы как раз и получаем главную диагональ с помощью перестановки (12).

Назовём инверсией такую ситуацию, когда большее число в перестановке расположено раньше, чем меньшее. В перестановке (12) инверсий нет, количество инферсий 0, то есть чётно. В перестановке (21) одна инверсия (то есть, их количество нечётно). Число , где k — число инверсий, определяет знак соответствующего произведения, участвующего в построении определителя

Лемма.Существует n! перестановок порядка n.

Доказательство.Для n = 2 это очевидно, перестановки только (12) и (21).

Дальше, доказательство по индукции. Пусть теперь для (n-1) этот факт доказан. Рассмотрим для n. На первом месте может стоять любое из n чисел, и при каждой из этих ситуаций, остаётся (n-1) число, которые должны занять (n-1) место, а это возможно (n-1)! способами. Итак, получается что как раз равно n!, что и требовалось доказать.

В частности, при n = 3 получается 6 перестановок:

(123) (132) (213) (231) (312) (321)

На первом месте одно из 3 чисел, и при этом оставшиеся 2 числа можно расставить на 2 места двумя способами. Получается 6 способов. Заметим, что 3! = 6.

Определитель 3 порядка. Примеры, методы вычисления.

= .

В записи определителя 3 порядка =

каждому элементу соответствует перестановка из 3 чисел.

Представьте себе прямоугольник, который сначала в 1-й строке, а затем спускается ко 2-й и 3-й, внутри него вправо и влево может двигаться квадрат, указывающий на какой-то из элементов. Запишем, в каком № столбца взяли элемент, когда находились в 1-й строке, затем так же во 2-й и 3-й. Например, для получится (231):

для соответствует (123) и т.д. напишем под каждым элементом свою перестановку:

(123) (231) (312) (321) (132) (213)

Видим, что при этом учтены все возможные перестановки, количество которых 3! = 6. Рассмотрим подробнее, как знак определяется по перестановкам. Обозначим дугой каждую инверсию:

Читайте также:  Работа с приложениями в андроиде

Если инверсий нечётное количество (1 или 3), то знак « — », если чётное (0 или 2) то «+». То есть, умножаем на , где k — число инверсий. Знак каждого произведения зависит от чётности или нечётности перестановки.

Все рассмотренные наборы элементов, которые перемножаются между собой, обладают тем свойством, что никакие 2 из них не находятся в одной и той же строке либо одном и том же столбце. Таких наборов всего 6, и они все учтены. А для матрицы порядка 2 таких наборов всего 2, поэтому там определитель состоит всего из 2 слагаемых. Почему же они не могут быть в одной строке или столбце? Ответ простой: ведь перестановка состоит из разных чисел, то есть там нет одинаковых на двух местах, поэтому из одного и того же столбца 2 раза мы не выберем. Из одной строки тем более: находясь в некоторой строке, мы выбираем элемент только 1 раз.

Для матрицы 4 порядка потребуется найти все четвёрки элементов, так чтобы никакие два не оказывались в одной строке или одном столбце. Их будет 24 = 1*2*3*4 = 4!

Запомнить метод вычисления определителей 3 порядка легче всего с помощью произведений по 3 параллельным линиям.

Надо дописать копии 1 и 2 столбца справа, и соединить по 3 параллельных линии: главная диагональ и параллельные ей (показаны зелёным цветом), затем побочная диагональ и параллельные ей (показаны красным). Умножить тройки чисел по 3 зелёным линиям, и взять их со знаком «+» а по красным прибавить со знаком «—». (Кстати, вместо столбцов справа можно дописать две строки снизу, и получится то же самое).

Примечание. Можно запомнить и с помощью треугольников, например, соответствует

Это один из двух треугольников, для которого главная диагональ — это средняя линия. Второй такой треугльник это .

Пример. = 1*2*4 + 1*3*0 + 2*0*1 — 0*2*2 — 1*3*1 — 4*0*1 = 8 — 3 = 5.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9217 — | 7813 — или читать все.

Ссылка на основную публикацию
Удалить программу через консоль
Операционная система Windows предлагает несколько способов для удаления установленных приложений и программ. Некоторые пользователи даже прибегают к использованию стороннего программного...
Тормозит wot что делать
Если лагает World Of Tanks World of Tanks – игровой проект, который рассчитан на большую аудиторию фанатов. Это означает, что...
Тормозит мобильный интернет мтс
Результаты поиска Пользование Симптомы При использовании мобильного интернета наблюдаются затруднения в доступе к интернет-ресурсам: слишком медленно происходят загрузка страниц в...
Удалить раздел жёсткого диска
Столкнулись с проблемой, что невозможно удалить EFI раздел с жёсткого диска в Windows? Не волнуйтесь данную проблему можно решить довольно...
Adblock detector