Средний модуль скорости молекул в газе

Средний модуль скорости молекул в газе

МОЛЕКУЛЯРНАЯ ФИЗИКА

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

1. Основные положения молекулярно-кинетической теории, строение вещества с точки зрения МКТ.

2. Что называют атомом? Молекулой?

3. Что называют количеством вещества? Какова его единица (дайте определение)?

4. Что называют молярной массой молярным объемом?

5. Каким образом можно определить массу молекул; размер молекул.Какова примерно масса молекул и их размеры?

6. Опишите опыты, подтверждающие основные положения МКТ.

7. Что называется идеальным газом? Каким условиям он должен удовлетворять? При каких условиях реальный газ по своим свойствам близок к нему?

8. Запишите формулы для средней арифметической скорости, средней квадратичной скорости.

9. Что доказывают опыты по диффузии? Броуновскому движению? Объясните их на основе МКТ

10. Что доказывает опыт Штерна? Объясните на основе МКТ.

11. Выведите и сформулируйте основное уравнение МКТ. Какие допущения используют при выводе основного уравнения МКТ.

12. Что характеризует температура тела?

13. Формулировка и математическая запись законов Дальтона, Бойля ­ Мариотта, Гей­ Люссака, Шарля.

14. Какова физическая сущность абсолютного нуля температуры? Запишите связь абсолютной температуры с температурой по шкале Цельсия. Достижим ли абсолютный нуль, почему?

15. Как объяснить давление газов с точки зрения МКТ? От чего оно зависит?

16. Что показывает постоянная Авогадро? Чему равно ее значение?

17. Чему равно значение универсальной газовой постоянной?

18. Чему равно значение постоянной Больцмана?

19. Написать уравнение Менделеева – Клапейрона. Какие величины входят в формулу?

20. Написать уравнение Клапейрона. Какие величины входят в формулу?

21. Что называется парциональным давлением газа?

22. Что называется изопроцессом, какие изопроцессы знаете.

23. Понятие, определение, внутренняя энергия идеального газа.

24. Параметры газа. Вывод объединенного газового закона.

25. Вывод уравнения Менделеева-Клапейрона.

26. Что называется: молярной массой вещества, количеством вещества, относительной атомной массой вещества, плотностью, концентрацией, абсолютной температурой тела? В каких единицах они измеряются?

27. Давление газа. Единицы измерения давления в СИ. Формула. Приборы для измерения давления.

28. Опишите и объясните две температурные шкалы: термодинамическую и практическую.

30. Сформулируйте законы, описывающие все виды изопроцессов?

31. Начертите график зависимости плотности идеального газа от термодинамической температуры для изохорного процесса.

32. Начертите график зависимости плотности идеального газа от термодинамической температуры для изобарного процесса.

33. Чем отличается уравнение Клапейрона-Менделеева от уравнения Клапейрона?

34. Запишите формулу средней кинетической энергии идеального газа.

35. Средняя квадратичная скорость теплового движения молекул.

36. Средняя скорость хаотического движения молекул.

2. Частицы, из которых состоят вещества, называют молекулами. Частицы, из которых состоят молекулы, называют атомами.

3. Величина, которая определяет количество молекул в данном образце вещества, называется количеством вещества. один моль — это количество вещества, которое содержит столько же молекул, сколько атомов углерода содержится в 12 г углерода.

4. Моля́рная ма́сса вещества — масса одного моля вещества (г/моль) Моля́рный объём — объём одного моль вещества, величина, получающаяся от деления молярной массы на плотность.

5. Зная молярную массу, можно вычислить массу одной мо­лекулы: m0 = m/N = m/vNA = М/NA Диаметром молекулы принято считать мини­мальное расстояние, на которое им позволяют сбли­зиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер моле­кул порядка 10-10 м.

7. Идеальный газ – это модель реального газа, которая обладает следующими свойствами:
Молекулы пренебрежимо малы по сравнению со средним расстоянием между ними
Молекулы ведут себя подобно маленьким твердым шарикам: они упруго сталкиваются между собой и со стенками сосуда, никаких других взаимодействий между ними нет.

Читайте также:  Выбор hdd для nas

Молекулы находятся в непрекращающемся хаотическом движении. Все газы при не слишком высоких давлениях и при не слишком низких температурах близки по своим свойствам к идеальному газу. При высоких давлениях молекулы газа настолько сближаются, что пренебрегать их собственными размерами нельзя. При понижении температуры кинетическая энергия молекул уменьшается и становится сравнимой с их потенциальной энергией, следовательно, при низких температурах пренебрегать потенциальной энергией нельзя.

При высоких давлениях и низких температурах газ не может считаться идеальным. Такой газ называют реальным. (Поведение реального газа описывается законами, отличающимися от законов идеального газа.)

Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали :

— Средняя квадратичная скорость молекул

— Постоянная Больцмана

— Температура

— Масса одной молекулы

— Универсальная газовая постоянная

— Молярная масса

— Количество вещества

— Средняя кинетическая энергия молекул

— Число Авогадро

Средняя арифметическая скорость молекул опр­деляется по формуле

,

где М — молярная масса вещества.

9. Броуновское движение. Однажды в 1827 г. английский ученый Р. Броун, изучая растения при помощи микроскопа, обнаружил очень необычное явление. Плавающие на воде споры (мелкие семена некоторых растений) скачкообразно двигались без видимых на то причин. Броун наблюдал это движение (см. рисунок) несколько дней, однако так и не смог дождаться его прекращения. Броун понял, что имеет дело с неизвестным науке явлением, поэтому он очень подробно его описал. Впоследствии это явление учёные-физики назвали по имени первооткрывателя – броуновским движением.

Объяснить броуновское движение невозможно, если не предположить, что молекулы воды находятся в беспорядочном, никогда не прекращающемся движении. Они сталкиваются друг с другом и с другими частицами. Наталкиваясь на споры, молекулы вызывают их скачкообразные перемещения, что Броун и наблюдал в микроскоп. А поскольку молекулы в микроскоп не видны, то движение спор и казалось Броуну беспричинным.

Диффузия

Как же объяснить ускорение этих явлений? Объяснение одно: повышение температуры тела приводит к увеличению скорости движения составляющих его частиц.

Итак, каковы же выводы из опытов?Самостоятельное движение частиц веществ наблюдается при любой температуре. Однако при повышении температуры движение частиц ускоряется, что приводит к возрастанию ихкинетической энергии. В результате эти более «энергичные» частицы ускоряют протекание диффузии, броуновского движения и других явлений, например растворения или испарения.

10. Опыт Штерна – опыт, в котором была экспериментально измерена скорость молекул. Было доказано, что разные молекулы в газе обладают разной скоростью, а при заданной температуре можно говорить о распределении молекул по скоростям и о средней скорости молекул.

Средняя скорость теплового движения молекул. Уравнение (2.9) дает возможность найти среднюю скорость теплового движения молекул. Подставляя в это уравнение получим выражение для среднего квадрата скорости:

Отсюда средняя скорость молекулы (точнее, средняя квадратическая скорость) равна:

Читайте также:  Прога для прошивки samsung

Вычисляя по формуле (2.12) скорость молекул, например азота, при получим: Молекулы водорода при той же температуре имеют скорость

Когда впервые были получены эти числа (вторая половина XIX в.), многие физики были ошеломлены. Скорости молекул газа по расчетам оказались большими, чем скорости артиллерийских снарядов! Высказывали на этом основании даже сомнения в справедливости кинетической теории. Ведь известно, что запахи распространяются довольно медленно: нужно время порядка десятков секунд, чтобы запах духов, пролитых в одном углу комнаты, распространился до другого угла. Это нетрудно объяснить. Из-за столкновений молекул траектория каждой молекулы представляет

собой запутанную ломаную линию (рис. 28). Большие скорости молекула имеет на прямолинейных отрезках ломаной. Перемещение же молекулы в каком-либо направлении в среднем невелико даже за время порядка нескольких минут. При перемещении молекулы из точки А в точку В пройденный ею путь оказывается гораздо больше расстояния

Экспериментальное определение скоростей молекул. Опыты по определению скоростей молекул доказали справедливость формулы (2.12). Один из опытов был предложен Штерном в 1920 г.

Прибор Штерна состоит из двух коаксиальных цилиндров А и В, жестко связанных друг с другом (рис. 29, а) Цилиндры могут вращаться с постоянной угловой скоростью. Вдоль оси малого цилиндра натя нута тонкая платиновая проволочка С, покрытая слоем серебра. По проволочке пропускают электрический ток. В стенке этого цилиндра имеется узкая щель О. Воздух из цилиндров откачан. Цилиндр В находится при комнатной температуре.

Вначале прибор неподвижен. При прохождении тока по нити слой серебра испаряется и внутренний цилиндр заполняется газом из атомов серебра. Некоторые атомы пролетают через щель О и, достигнув внутренней поверхности цилиндра осаждаются на ней. В результате прямо против щели образуется узкая полоска серебра (рис. 29, б).

Затем цилиндры приводят во вращение с угловой скоростью Теперь за время необходимое атому для прохождения пути, равного разности радиусов цилиндров цилиндры повернутся на некоторый угол . В результате атомы, движущиеся с постоянной скоростью, попадут на внутреннюю поверхность большого цилиндра не прямо против щели О (рис. 30, а), а на некотором расстоянии от конца радиуса, проходящего через середину щели (рис. 30, б). Ведь атомы движутся прямолинейно. Расстояние равно:

В действительности не все атомы сереора имеют одну и ту же скорость. Поэтому расстояния для различных атомов будут несколько различаться. Под следует понимать расстояние между участками на полосках и с наибольшей концентрацией атомов серебра. Этому расстоянию будет соответствовать средняя скорость атомов.

Средняя скорость атома равна:

Подставляя в эту формулу значение из выражения (2.13), получим:

Зная и измеряя среднее смешение полоски серебра, вызванное вращением прибора, находим среднюю скорость атомов серебра.

Модули скоростей, определенные из опыта, совпадают с теоретическим значением средней квадратической скорости. Это служит экспериментальным доказательством справедливости формулы (2.12), а следовательно и (2.9), согласно которой средняя кинетическая энергия молекулы прямо пропорциональна абсолютной температуре.

Средняя скорость броуновской частицы. Формула (2.12) позволяет понять, почему интенсивность броуновского движения возрастает с повышением температуры жидкости и уменьшается при увеличении массы частицы. Ведь броуновская частица участвует в тепловом движении молекул. Поэтому ее средняя кинетическая энергия также определяется формулой (2.9), а средняя квадратическая скорость — формулой

Читайте также:  Как в 1с сделать возврат денежных средств

где — масса броуновской частицы. Если масса частицы великг, то средняя скорость ее движения настолько мала, что движение частицы практически нельзя обнаружить.

1. Как изменится средняя квадратическая скорость движения молекул при увеличении температуры в 4 раза? 2. Какие молекулы в атмосфере движутся быстрее: молекулы азота или молекулы кислорода? 3. Почему толщина слоя полоски серебра на поверхности внешнего вращающегося цилиндра в опыте Штерна неодинакова по ширине полоски?

При любой температуре имеется некоторое количество молекул, скорости которых, а значит, и кинетические энергии, заметно превышают средние.

Известно, что многие химические реакции, например горение обычных видов топлива (дрова, уголь и т. д.), начинаются только при определенной, достаточно высокой температуре. Энергия, необходимая для начала процесса окисления топлива, т. е. горения (ее называют энергией активации), имеет порядок 10 -19 Дж. А при температуре 293 К (комнатная температура) средняя кинетическая энергия теплового движения молекул составляет примерно 5·10 -21 Дж. Поэтому горение не происходит. Однако увеличение температуры всего лишь в 2 раза (до 586 К) вызывает воспламенение. Средняя энергия молекул увеличивается при этом тоже в 2 раза, но число молекул, кинетическая энергия которых превышает 10 -19 Дж, увеличивается в 10 8 раз. Это следует из распределения Максвелла. Поэтому при температуре 293 К вы чувствуете себя, читая книгу, комфортно, а при 586 К книга начинает гореть.

Испарение жидкости также определяется быстрыми молекулами правого «хвоста» максвелловского распределения. Энергия связи молекул воды при комнатной температуре значительно больше kT. Тем не менее испарение происходит за счет небольшого числа быстрых молекул, у которых кинетическая энергия превышает kT.

Максвелл открыл новый тип физического законастатистический и нашел распределение молекул по скоростям. Он отчетливо понимал значение своего открытия. В докладе Кембриджскому философскому обществу Максвелл сказал: «Я считаю, что наиболее важное значение для развития наших методов мышления молекулярные теории имеют потому, что они заставляют делать различие между двумя методами познания, которые мы можем назвать динамическим и статистическим».

§ 4.7. Измерение скоростей молекул газа

Основное уравнение молекулярно-кинетической теории газов (4.4.9) было получено на основе модели идеального газа. При этом было сделано несколько упрощающих реальную картину предположений. Чтобы убедиться в допустимости сделанных предположений, нужно проверить экспериментально вытекающие из уравнения (4.4.9) следствия. Одним из главных следствий основного уравнения молекулярно-кинетической теории является зависимость среднего квадрата скорости теплового движения молекул (микроскопическая характеристика газа) от температуры (макроскопической характеристики состояния газа). Эту зависимость и можно проверить экспериментально.

Средняя скорость теплового движения молекул

Из сопоставления уравнения (4.4.9) с термодинамическим уравнением состояния идеального газа было получено выражение (4.5.5) для средней кинетической энергии поступательного движения молекул:

Отсюда средний квадрат скорости поступательного движения равен:

(4.7.1)

Квадратный корень из этой величины называется средней квадратичной скоростью:

(4.7.2)

Средняя квадратичная скорость мало отличается от наиболее вероятной скорости, определяемой выражением (4.6.9). Так как постоянная Больцмана равна отношению универсальной газовой постоянной к постоянной Авогадро , а массу молекулы можно выразить через ее молярную массу, то из формулы (4.7.2) получается:

(4.7.3)

Вычисленные по этой формуле скорости для различных газов при t = 0 °С = 273 К) приведены в таблице 1.

, м/с

, м/с

Ссылка на основную публикацию
Справка по форматированию steam
С помощью этих тегов разметки можно форматировать текст ваших сообщений, примерно как в HTML. Маркированный список Маркированный список Маркированный список...
Совместимость ssd с ноутбуками
Вопрос совместимости Многие пользователи интересуются совместимостью материнской платы и SSD, который они купили или хотят купить. Опыт показывает, что не...
Совместимость ремешков apple watch
Здесь приводятся общие инструкции, которые помогут Вам снять, поменять и застегнуть ремешок. В случае смены ремешка убедитесь, что размеры используемого...
Справочные материалы база данных
АРМ предназначено для комплексной автоматизации операций, связанных с первичным размещением и вторичным обращением ценных бумаг. Оно рассчитано на работу с...
Adblock detector