Схема одноступенчатой холодильной машины

Схема одноступенчатой холодильной машины

В настоящее время в системах кондиционирования воздуха в пассажирских вагонах широкое распространение получили так называемые парокомпрессионные холодильные машины [10-13]. Особенностью этих машин является то, что все рабочие процессы: сжатие рабочего тела, его конденсацию, расширение и кипение происходят при температурах ниже критической.

Для понижения температуры воздуха в помещениях изотермических и пассажирских вагонов ниже температуры окружающей среды используются машинные системы охлаждения, работа которых базируется на использовании двух законов термодинамики.

Важной характеристикой термодинамической системы является ее внутренняя энергия (U), которая представляет собой энергию теплового движения молекул и атомов системы. Внутренняя энергия может изменяться в результате совершения над системой работы или за счет сообщения ей тепла. В общем случае тепло Q подведенное к изолированной системе расходуется на увеличение ее внутренней энергии DU и на совершение механической работы L:

Согласно первому закону термодинамики (закон сохранения энергии) разные формы энергии эквивалентно переходят из одного вида в другой. Известно, что энергия теплового движения молекул может превращаться в механическую работу в количестве равному механическому эквиваленту тепла:

1 ккал=427 кгс·м =4,1868 кДж.

В соответствие со вторым законом термодинамики, теплота может производить работу только в том случае, если температурный уровень используемой теплоты выше температуры окружающей среды. Следовательно, теплота с низкого температурного уровня может быть перенесена на более высокий температурный уровень только при совершении работы.

В процессе работы холодильной машины (принципиальную схему см. рисунок 36), от термостата с более низкой температурой Т отбирается количество тепла равное q и передается термостату с более высокой температурой Т1 в количестве qk.

Количество тепла отводимого в круговом процессе холодильной машины, определяется по формуле:

где qо — количество тепла, отведенное от охлаждаемого тела;

L затраченная работа в цикле.

Парокомпрессионная холодильная машина (см. рисунок 37) состоит из компрессора 1, конденсатора 2, регулирующего вентиля 3 и испарителя 4, соединенные между собой трубопроводами а, б, в, д.

Рисунок 36. Принципиальная схема действия холодильной машины

В парокомпрессионной холодильной машине циркулирует одно и то же количество хладагента, который изменяет только свое агрегатное состояние (при кипении и конденсации) и не сопровождается расходом хладагента.

1– компрессор, 2 – конденсатор, 3 – регулирующий вентиль, 4 –испаритель,

а, б, в, д – соединительные трубопроводы

Рисунок. 37. Схема холодильной машины

Последовательность работы парокомпрессионной холодильной машины происходит следующим образом: хладагент после сжатия в компрессоре 1 поступает в конденсатор 2, в котором отводится теплота сжатия, в результате чего пары хладагента конденсируются при давлении нагнетании (РК) и температуре конденсации (ТК). Далее жидкий хладагент направляется в дроссельный вентиль 3, в котором давление хладагента снижается до давления всасывания (РВС), что сопровождается понижением его температуры. Охлажденный хладагент поступает в испаритель 4, где за счет подвода тепла от охлаждаемого объекта хладагент кипит, а образовавшие пары поступают на всасывание в компрессор. Далее цикл повторяется.

Таким образом, парокомпрессионная холодильная машина для получения холода должна иметь следующие аппараты: компрессор, конденсатор, дроссельный вентиль и испаритель.

Компрессор предназначен для сжатия паров хладагента, и организации его циркуляции между конденсатором и испарителем.

Конденсатор служит для отвода теплоты сжатия, и конденсации паров хладагента.

Испаритель предназначен для отвода тепла от охлаждаемого объекта за счет кипения хладагента при заданной температуре охлаждения.

Регулирующий вентиль необходим для понижения давления паров рабочего тела (дросселирования), в результате чего происходит понижение температуры, сопровождающее его сжижением.

Дата добавления: 2015-02-23 ; просмотров: 1597 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Одноступенчатые холодильные машины. При работе паровых компрессионных холодильных машин цикл совершается в области влажного пара холодильного агента, где изобары совпадают с изотермами, что позволяет теоретически рассмотреть цикл Карно.

Функциональная схема паровой одноступенчатой холодильной машины и обратимый цикл Карно, совершаемый ею, приведены на рис. 3.

Рис. 3. Функциональная схема паровой одноступенчатой холодильной

машины б —диаграмма работы машиныЖидкий холодильный агент кипит в испарителе И при постоянной температуре ТK (процесс 4—1), в результате чего от охлаждаемого тела, например воздуха, отводится теплота. При кипении холодильного агента происходит поглощение значительного количества теплоты.Образовавшийся пар вместе с небольшим количеством неиспарившегося холодильного агента адиабатически сжимается в компрессоре КM до давления РK (процесс 12) и поступает в конденсатор Кн, конденсируясь при постоянной температуре Тк (процесс2— 3) и отдавая поглощенную в испарителе теплоту окружающей среде — воздуху или воде.Жидкий холодильный агент адиабатически расширяется в детандере Д до давления Ро (процесс 3—4), совершая при этом полезную работу.

Количество отведенной 1 кг холодильного агента теплоты q0 в испарителе определяется на S—T-диаграмме площадью а—4—1—b и может быть представлено как разность энтальпий i1 – i4. Количество теплоты qобр, отданное 1 кг холодильного агента в

конденсаторе, определяется площадью а — 3—2—b или разностью энтальпий i2 — i3.Работа цикла lобр может быть определена разностью работ компрессора и детандера: lобр = lK – lp. (10)Работа компрессора и детандера может быть записана lk = i2i1 и lр = i3 – i4. (11)Холодильный коэффициент цикла εобр0 может быть выражен какεобр0 = qобр0 /lобр = (i1 – i4) / [(i2 – i1) – (i3 – i4)]. (12)Рассмотренный цикл Карно является обратимым. Однако осуществить его практически трудно, так как работа, полученная в детандере, значительно меньше работы, затраченной в компрессоре, ибо жидкость практически несжимаема, а удельные объемы жидкости и пара различаются в сотни раз.Следует иметь в виду и то, что часть работы детандера тратится на преодоление сил трения, поэтому вместо детандера в паровой холодильной машине используется дроссельный (регулирующий) вентиль ДВ, изображенный на рис. 3 штрихами. Дроссельный вентиль прост в устройстве и надежен в эксплуатации. Вследствие замены детандера дроссельным вентилем в цикле появляется необратимый процесс дросселирования 3—4, проходящий без производства работы и теплообмена с окружающей средой, т.е. при постоянной энтальпии, поэтому i = i4.

Читайте также:  Мощность автомобильного аккумулятора в ваттах

При адиабатическом дросселировании работа расширения переходит в теплоту трения, поэтому часть циркулирующего жидкого холодильного агента, пропорциональная выделенной теплоте, превращается в пар. В испаритель холодильный агент поступает в виде парожидкостной смеси. Поэтому только часть циркулирующего холодильного агента кипит в испарителе, воспринимая теплоту от охлаждаемого тела, вследствие чего удельная массовая холодопроизводительность холодильного агента уменьшается на величину, соответствующую площади а—4—4’—с:Δq0 = i4’ – i4. (13)

Удельная массовая холодопроизводительность холодильного агента в этом случае:

q0 = qобр0 — Δq0 = (i1 – i4) – (i4’ – i4) = i1 – i4’. (14)

Холодильный коэффициент циклаε = q0 / l = (i1 – i4’) / (i2 – i1). (16)

Как видно, замена детандера дроссельным вентилем приводит к уменьшению удельной массовой холодопроизводительности холодильного агента, холодильного коэффициента и увеличению работы цикла. В циклах 1—2—3—4 и 1—2—3—4’ влажный пар выходит из испарителя и поступает в компрессор. Это уменьшает производительность компрессора вследствие повышения удельного объема всасываемого пара и падения давления, возникает опасность аварии компрессора в результате гидравлического удара. Чтобы избежать этого, холодильные машины должны работать так, чтобы из испарителя выходил сухой насыщенный или перегретый пар, а в компрессор поступал перегретый пар холодильного агента. Это можно осуществить в цикле 1’— 2’— 3— 4’ со всасыванием в компрессор сухого насыщенного пара.Для сжатия пара обратимым путем необходимо провести два процесса сжатия:адиабатическое 1’ — 2" и изотермическое 2” — 2, для чего требуется два компрессора. Хотянеобратимые потери в цикле 1’—2’—3—4’ больше, чем в цикле 1’—2’’—3—4’, так как холодильный агент передает теплоту окружающей среде в процессе 2’— 2 при конечной разности температур, на практике реализуют цикл 1’2’—3—4’, так как для него достаточно одного компрессора.Удельная массовая холодопроизводительность холодильного агента в обоих циклах одинакова:q0 = i1’ – i4’. (17)Но количество теплоты, отданной 1 кг холодильного агента в конденсаторе окружающей среде, и работа цикла 1’ —2’— 3—4’ будут больше, чем в цикле 1’—2’’—3—4’,на величину площади 22’—2’’. Холодильный коэффициент цикла 1’—2’—3—4’

определяется как ε = (i1’ – i4’) / (i2’ – i1’). (18)и будет меньше, чем коэффициент цикла 1’— 2’’ —3—4’.При всасывании в компрессор перегретого пара (цикл 1а — 2а3—4’) удельная массовая холодопроизводительность холодильного агента увеличивается, но в большей степени возрастает работа цикла, поэтому необратимые потери увеличиваются. Их можно сократить. Так, необратимые потери, связанные с дросселированием хладагента, могут быть уменьшены его охлаждением перед дросселированием (процесс 3—3′) до температуры ниже температуры окружающей среды. Это можно осуществить, например, артезианской водой, температура которой ниже температуры окружающей среды. В таком случае удельная массовая холодопроизводительность холодильного агента возрастет на величину i4 – i4’’, а величина работы цикла не изменится.

Жидкий холодильный агент перед дросселированием можно охладить также паром, выходящим из испарителя в регенеративном теплообменнике, осуществив цикл, называемый регенеративным. Однако при этом температура всасываемого в компрессор (точка вместо 1’) и нагнетаемого в конденсатор (точка вместо 2′) пара повышается, что увеличивает необратимые потери так называемого перегрева.

Теоретически выгоднее влажный ход компрессора, так как при этом цикл ближе к идеальному циклу Карно. Однако практически производительность компрессора при влажном ходе всегда и для всех холодильных агентов значительно ниже, чем при сухом ходе, т.е. при всасывании сухих насыщенных паров или несколько перегретых при том же давлении кипения Ро. Отсюда получаем теоретический цикл современной паровой компрессионной машины на S—T-диаграмме в виде 1а — 2а—3’— 4". Сейчас почти во всех холодильных машинах компрессоры работают при сухом ходе.

В машинах, работающих на аммиаке, этот режим работы компрессора достигается при помощи специального аппарата — отделителя жидкости либо путем регулирования подачи холодильного агента в испаритель. Отделитель жидкости включается во всасывающую линию холодильной установки между испарителем и компрессором.

В хладоновых установках сухой ход компрессора достигается при помощи специальных теплообменников или путем регулирования подачи холодильного агента в испаритель.

Эффективность работы машины оценивается ее холодильным коэффициентом и холодопроизводительностью, которые зависят от типа и конструкции установки, вида и свойств холодильного агента, конструкции компрессора, а также условий работы. Под условиями работы холодильной машины подразумевают температуру кипения холодильного агента в испарителе t0, температуру конденсации сжатых паров агента в конденсаторе tK, температуру переохлаждения жидкого холодильного агента, поступающего в регулирующий вентиль tп.Чем выше температура кипения t0, чем ниже температура конденсации паров tK и температура переохлаждения tп, тем больше холодопроизводительность установки. Однако все эти изменения надо проводить в разумных пределах. Так, например, понижение температуры кипения холодильного агента t0 в хладоновой компрессионной машине с -15 до -30 °С не повысит, а понизит ее холодопроизводительность в 2 раза. Это объясняется тем, что с понижением t0 уменьшаются давление кипения Ро и удельный вес паров, поступающих в компрессор. В результате снижается производительность компрессора. Следовательно, без необходимости не нужно переводить холодильную машину на работу с более низкой температурой кипения.

Читайте также:  Флешка перестала работать как ее починить

Многоступенчатые холодильные машины.

Одноступенчатые компрессорные машины применяют при Рк/Р 9, что соответствует температуре кипения -20 °С и конденсации 30 0 С. При больших значениях отношения давлений холодопроизводительность снижается, поэтому вместо одноступенчатых применяют двух-,трехступенчатые и каскадные холодильные машины. Кроме того, при больших значениях отношения Рк/Р температура пара в конце сжатия в одноступенчатой машине чрезмерно высока, что приводит к потере маслом смазочных свойств, его самовозгоранию, повышению износа деталей компрессора.Переход к многоступенчатому сжатию обусловлен и необходимостью соблюдения условий прочности, так как по расчетам разность давлений Рк — Ро превышать 1,7 МПа. В многоступенчатых машинах температура паров компрессоров не должна холодильного агента в конце сжатия первой ступени компрессора обычно выше температуры окружающей среды, поэтому приходится охлаждать перегретый пар прямоточно в водяном межступенчатом холодильнике. Кроме водяного применяют промежуточное охлаждение холодильным агентом, что увеличивает холодильный коэффициент. Многократное дросселирование холодильного агента с промежуточным отбором пара снижает энергетические потери.Холодильный агент сжимается до давления конденсации последовательно в две или более ступеней с промежуточным охлаждением частично сжатых паров. На каждой ступени отношение давления нагнетания к давлению всасывания меньше, чем Рк/Р для полного цикла данной машины. В схемах с многократным дросселированием промежуточное охлаждение между ступенями сжатия может быть полным и неполным .Неполное промежуточное охлаждение осуществляется водой. В этом случае температура сжатого пара после цилиндра низкого давления (ЦНД) — процесс 1—2 — снижается в водяном межступенчатом холодильнике I до состояния 3′ сухого перегретого пара, а затем пар поступает в цилиндр высокого давления (ЦВД). Состояние 4′ на S—T диаграмме (рис. 5) соответствует состоянию пара после сжатия в ЦВД в двухступенчатой холодильной машине без промежуточного отбора пара.

Промежуточный отбор пара осуществляется из промежуточного сосуда II, в который поступает парожидкостная смесь после первого дросселирования в РВ1. Жидкость на РВ1подается из конденсатора III при давлении конденсации Рк, соответствующем давлению пара в ЦВД, и снижается после дросселирования до промежуточного давления Р’o (см. рис. 5)

Рис. 5. Цикл многоступенчатой парокомпрессионной машины

Сухой насыщенный пар из промежуточного сосуда (состояние 3) (рис.5) поступает в ЦВД. В результате смешивания сухого насыщенного и перегретого паров после холодильника всасываемый в ЦВД пар переходит в состояние 3", а после сжатия — в 4" (процесс 3"—4")(см. рис. 5). Жидкость из промежуточного сосуда используется для кипения в испарителе V (рис.4) при более низкой температуре То и давлении P" после вторичного дросселирования в РВ2, но может использоваться и для кипения в испарителе IV при более высокой температуре кипения Т"о и давлении P’ в цикле после первого дросселирования в РВ1. Из испарителя IV сухой насыщенный пар (точка 3) выходит в том же состоянии, что и из промежуточного сосуда.При полном промежуточном охлаждении состояние рабочего тела перед всасыванием в компрессор более высокой ступени соответствует состоянию сухого насыщенного пара.Сжатый в ЦНД пар после межступенчатого водяного холодильника (точка 3′, рис. 4,б) поступает на доохлаждение в промежуточный сосуд II, где приходит в состояние насыщенного пара (точка 3, рис. 5). Из промежуточного сосуда сухой насыщенный пар отсасывается в ЦВД. При наличии испарителя IV из него в ЦВД также поступает сухой насыщенный пар. Процесс сжатия пара в ЦВД характеризуется линией 3—4 (см. рис. 5), температура конца сжатия в этом случае более низкая, чем при других двухступенчатых схемах.Через разные элементы многоступенчатых схем с промежуточным отбором пара циркулирует неодинаковое количество вещества. Поэтому массовые потоки в элементах многоступенчатых машин при их расчетеотносят к 1 кг рабочего тела, проходящего через низкотемпературный испаритель.Для получения очень низких температур применения одного рабочего теланедостаточно из-за давлений кипения рабочего тела, близких к глубокому вакууму, затвердевания его при низкой температуре кипения в испарителе и по другим причинам. В этих случаях приходится использовать каскадные холодильные машины, в каждой ступени которых применяют свое рабочее тело. При этом испаритель каждой следующей ступени является конденсатором предыдущей. Холодильный коэффициент цикла холодильной машины, который называют теоретическим, составляет примерно 80 % холодильного коэффициента идеального цикла Карно при тех же значениях Тк и То.

Холодильный коэффициент реального цикла холодильной машины, в свою очередь, еще меньше из-за объемных и энергетических потерь.

Читайте также:  Список игр для видеокарты 512 мб

Регенеративный теплообменник представляет собой аппарат, внутри кожуха, которого установлен змеевик. По змеевику протекает теплый жидкий хладагент, который снаружи охлаждается холодными парами хладагента, выходящего из испарителя. В результате теплообмена жидкий хладагент переохлаждается перед дросселированием, а пары из испарителя дополнительно перегреваются. Рассмотрим работу подобной холодильной машины (рис. 1.10).

Рис.1.10 . Схема одноступенчатой парокомпрессионной холодильной машины с регенеративным теплообменником (а), ее цикл в диаграмме s-T (б) и i-lg p (в)

Пусть точка 1 характеризует состояние паров хладагента перед компрессором. Тогда процесс (1–2) – сжатие в компрессоре, (2–2′) – снятие перегрева в конденсаторе, (2′–3′) – конденсация паров хладагента в конденсаторе и дополнительное переохлаждение в конденсаторе (3′–3) при соприкосновении жидкого конденсата с более холодной забортной водой. Подобное переохлаждение дает «чистое» увеличение удельной массовой холодопроизводительности на ∆q0′ (пл.аа′b′b в диаграмме s–T или отрезок аа′ в диаграмме i–lg p) без дополнительного увеличения удельной работы и всегда полезно для холодильной установки. После конденсатора жидкий хладагент проходит внутри змеевика регенеративного теплообменника и переохлаждается (3–4) за счет холодных паров хладагента, проходящих из испарителя. В регулирующем вентиле переохлажденный хладагент дросселируется (4–5) от давления pк до давления p0, кипит (5–5′) и перегревается (5′–6) в испарителе. Затем холодные пары хладагента перегреваются в регенеративном теплообменнике (6–1) при переохлаждении жидкого хладагента и вновь поступают на всасывание компрессора.

Для сравнения красными прерывистыми линиями на полученный цикл нанесен цикл без регенеративного теплообменника.

Сравнение циклов показывает увеличение удельной массовой холодопроизводительности на величину ∆q0 при введении дополнительного переохлаждения жидкого хладагента, что связано с уменьшением парообразования при дросселировании хладагента. Напротив, дополнительный перегрев пара перед компрессором повышает удельную работу сжатия на ∆l. В зависимости от свойств хладагента прирост удельной массовой холодопроизводительности может быть больше прироста удельной работы или, наоборот, меньше. Тогда в первом случае введение в схему регенеративного теплообменника улучшит холодильный коэффициент цикла, а во втором – ухудшит.

Пример 2. В начальные условия примера 1 ввести переохлаждение в регенеративном теплообменнике 10 °С. Сравнить эффективность применения регенеративного теплообменника для хладагентов R134а и R404А.

Решение. На риc.1. 11 регенеративные циклы показаны красными линиями.

По циклам определяем необходимые расчетные данные:

i1p = 394 + 14 = 408 кДж/кг;

Рис.1.11 . Построение циклов для холодильной машины с регенеративным теплообменником.

i1p = 365 + 15 = 380 кДж/кг ;

Как видно из приведенного решения, недостающие координаты точки 1 на всасывании в компрессор можно найти из уравнения теплового баланса для регенеративного теплообменника – количество удельной теплоты, взятой у жидкого хладагента при его переохлаждении, равно теплоте, отданной охлаждающим парам хладагента (теплообменом с окружающей средой пренебрегаем), т.е.

Точка 3р лежит на пересечении изотермы, соответствующей температуре переохлаждения в РТО (перпендикуляра в области переохлажденной жидкости), и изобары конденсации.

Далее выполняем расчет основных показателей работы холодильной машины для хладагентов R134а и R404А. Результаты расчета следующие.

– Удельная массовая холодопроизводительность

– Удельная объемная холодопроизводительность

– Удельная работа компрессора lр, кДж/кг,

– Тепловая нагрузка конденсатора qкр, кДж/кг,

Анализ расчетов в примерах 1 и 2 показывает, что регенеративный цикл для R134а увеличивает удельную массовую холодопроизводительность и повышает экономичность цикла (ε = 5,22). Регенерация для R404А, увеличивая qр, несколько снижает холодильный коэффициент теоретического цикла. Введение в схему холодильной машины регенеративного теплообменника позволяет увеличить удельную массовую холодопроизводительность на 8 – 10 %.

1.2.4. Холодильная машина с винтовым компрессором и экономайзером.

В настоящее время большое распространение получили холодильные машины с винтовыми компрессорами, у которых в качестве переохладителя жидкого хладагента используется экономайзер Э (рис. 1.12).

В частности, подобные винтовые холодильные машины в судовом исполнении типа 21(22)АК50-2-5-ОМ4 и 21(22)АК100-2-5-ОМ4 выпускаются отечественным Черкесским заводом холодильного машиностроения. Конструктивно экономайзер представляет собой теплообменный аппарат, собранный из отдельных секций оребренных медных труб в виде змеевика, помещенного внутрь корпуса. Внутри змеевика протекает жидкий хладагент, кипящий при промежуточном давлении, охлаждаемый снаружи жидкий хладагент, поступающий из конденсатора.

Пусть точка 1 характеризует состояние паров хладагента, выходящего из испарителя. В винтовом компрессоре они сжимаются (1–2) до промежуточного давления pп и смешиваются с холодными парами хладагента, поступающими из экономайзера Э с состоянием в точке 3. Полученная смесь (точка 4) окончательно сжимается до давления конденсации (4–5), в конденсаторе снимается перегрев, и происходит конденсация хладагента (5–5′) и (5′–6) (в цикле показан процесс без переохлаждения в конденсаторе).

Рис.1. 12. Схема и цикл холодильной машины с винтовым компрессором и экономайзером

После конденсатора поток жидкого хладагента делится на две части – меньшая часть, дросселируясь в регулирующем вентиле РВ1 до промежуточного давления pп (6–7), кипит внутри змеевика экономайзера при промежуточной температуре tп, переохлаждая основной поток хладагента из конденсатора (6–8), проходящий в межтрубном пространстве этого теплообменника. Переохлажденный хладагент дросселируется в РВ2, кипит (9–9′) и перегревается (9′–1) в испарителе. По данным фирмы «Сталл», введение в схему холодильной установки экономайзера может повысить её холодопроизводительность на 25 – 40 %.

Дата добавления: 2016-06-29 ; просмотров: 4681 ;

Ссылка на основную публикацию
Стиральная машина самсунг горит красный замок
Любая стиральная машина в независимости от марки производителя иногда выходит из строя. Довольно частым признаком неисправности, является мигание индикатора замка....
Справка по форматированию steam
С помощью этих тегов разметки можно форматировать текст ваших сообщений, примерно как в HTML. Маркированный список Маркированный список Маркированный список...
Справочные материалы база данных
АРМ предназначено для комплексной автоматизации операций, связанных с первичным размещением и вторичным обращением ценных бумаг. Оно рассчитано на работу с...
Стиральная машинка lg не выжимает
Покупка стиральной машинки – знаменательное событие для любой хозяйки. Незаменимая помощница позволяет женщинам экономить личное время, не тратя его на...
Adblock detector