Решение парадоксов рассела было осуществлено благодаря созданию

Решение парадоксов рассела было осуществлено благодаря созданию

Самым знаменитым из открытых уже в прошлом веке парадоксов является антиномия, обнаруженная Бертраном Расселом и сообщенная им в письме к Г. Ферге. Рассел открыл свой парадокс, относящийся к области логики и математики, в 1902г. Эту же антиномию обсуждали одновременно в Геттингене немецкие математики 3. Цермело (1871— 1953) и Д. Гильберт. Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. — СПб., 2000. — С. 512-514. . Этот парадокс вызвал в математике, по мнению Гильберта, эффект полной катастрофы. Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями. Оказалось, что в теории множеств Кантора, которая с восторгом была принята большинством математиков, имеются странные противоречия, от которых невозможно, или, по крайней мере, очень трудно, избавиться. Парадокс Рассела особенно ярко выявил эти противоречия. Над его разрешением, так же, как и над разрешением других найденных парадоксов канторовской теории множеств, трудились самые выдающиеся математики тех лет. Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но из какого места и в каком направлении? Курант Р., Роббинс Г. Что такое математика? — гл. II, § 4.5.

Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования? С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики Л. Френкель и И. Бар-Хиллел уже без всяких оговорок утверждали: «Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели». Современный американский логик X. Карри писал немного позднее об этом парадоксе: «В терминах логики, известной в XIX в., положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка» Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. — СПб., 2000. — С. 512-514..

Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса. Можно говорить о множествах различных объектов, например, о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго — каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий. Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов — это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента.

Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством.

Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие. И получено оно на основе самых правдоподобных предположений и с помощью бесспорных как будто шагов. Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о не существовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы.

Парадокс Рассела замечателен своей крайней общностью Курант Р., Роббинс Г. Что такое математика? — гл. II, § 4.5. . Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий «множество» и «элемент множества». Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще.

Другие варианты парадокса Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства.

Это становится очевидным, если переформулировать парадокс в чисто логических терминах. О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет. Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе.

Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, не приложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально. Логическая, касающаяся свойств разновидность антиномии Рассела, столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность.

Рассел предложил также следующий популярный вариант открытого им парадокса Катречко С.Л. Расселовский парадокс брадобрея и диалектика Платона-Аристотеля // Современная логика: проблемы теории, истории и применения в науке. — СПб., 2002. — С. 239- 242.. Представим, что совет одной деревни так определил обязанности брадобрея: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот брадобрей бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно.

Читайте также:  Как запустить debug в windows 7

Рассуждение о брадобрее опирается на допущение, что такой брадобрей существует. Полученное противоречие означает, что это допущение ложно, и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами. Обязанности брадобрея не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является все-таки парадоксальным. Условие, которому должен удовлетворять деревенский брадобрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. — СПб., 2000. — С. 512-514..

Рассуждение о брадобрее может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.

Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге. Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя? Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать.

Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс. Допустим, что в какой-то момент был составлен каталог, скажем К1, включающий, все отличные от него каталоги, не содержащие ссылки на себя. С созданием К1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что К1 не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в К1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1, но не сам К2. Добавив к К2 такое упоминание, получим КЗ, который опять-таки не полон из-за того, что не упоминает самого себя. И далее без конца.

Можно упомянуть еще один логический парадокс — "парадокс голландских мэров", сходный с парадоксом брадобрея. Каждый муниципалитет в Голландии должен иметь мэра, и два разных муниципалитета не могут иметь одного и того же мэра. Иногда оказывается, что мэр не проживает в своем муниципалитете. Допустим, что издан закон, согласно которому некоторая территория S выделяется исключительно для таких мэров, которые не живут в своих муниципалитетах, и предписывающий всем этим мэрам поселиться на этой территории. Допустим, далее, что этих мэров оказалось столько, что территория S сама образует отдельный муниципалитет. Где должен проживать мэр этого Особого Муниципалитета S? Простое рассуждение показывает, что если мэр Особого Муниципалитета проживает на территории S, то он не должен проживать там, и наоборот, если он не проживает на территории, то он как раз и должен жить на этой территории. То, что этот парадокс аналогичен парадоксу брадобрея, совершенно очевидно.

Рассел одним из первых предложил вариант решения “своего” парадокса. Предложенное им решение, получило название "теории типов": множество (класс) и его элементы относятся к различным логическим типам, тип множества выше типа его элементов, что устраняет парадокс Рассела (теория типов был использована Расселом и для решения знаменитого парадокса "Лжец"). Многие математики, однако, не приняли расселовское решение, считая, что оно накладывает слишком жесткие ограничения на математические утверждения Катречко С.Л. Расселовский парадокс брадобрея и диалектика Платона-Аристотеля // Современная логика: проблемы теории, истории и применения в науке. — СПб., 2002. — С. 239- 242..

Аналогично обстоит дело и с другими логическими парадоксами. «Антиномии логики, — пишет фон Вригт, — озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения, сколько как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления» Вригт Г.Х. фон. Логика и философия в XX веке // Вопр. философии. 1992. № 8..

СОКРАЩЁННАЯ И ИЗМЕНЁННАЯ глава из работы
«Логические парадоксы. Пути решения»
http://proza.ru/2009/01/22/165

Парадокс Б. Рассела «О парикмахере (цирюльнике, брадобрее)»
http://www.proza.ru/2009/06/17/17

Бритый брадобрей или снова о парикмахере
http://proza.ru/2010/11/20/674

В начале 20-го века Бертраном Расселом был открыт логический парадокс. Он сообщил о нём в своём письме к известному математику, философу и логику Готлобу Фреге – основателю современной логической семантики – когда тот «в 1902 году уже передал в печать второй том «Оснований арифметики». В письме «сообщалось о формальном противоречии в предложенном Фреге обосновании арифметики (парадокс Рассела), разрешить которое Фреге тщетно пытался до конца своей жизни. Однако именно Рассел принёс Фреге широкую известность, ибо в изложении Рассела (специальное приложение к Основаниям математики, 1903) концепция Фреге стала доступной широкому кругу читателей». Конец цитаты http://www.krugosvet.ru/articles/92/1009213/1009213a1.htm).
Не только Фреге, но и никто другой за сто с лишним лет до сегодняшнего дня не смог решить этот логический парадокс. Никто, кроме меня.

«Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса» (Ивин А. А. Искусство правильно мыслить. – М.: Просвещение. – 1998). В таком виде решение находится в другой статье: Парадокс Рассела – исходный вариант – о множествах, http://proza.ru/2009/04/20/768. Но весь мир знает его в другой формулировке. Рассел «предложил следующий популярный вариант открытого им парадокса математической теории множеств.
Представим, что совет одной деревни так определил обязаннос­ти парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя?». (Ивин А. А. Искусство правильно мыслить. – М.: Просвещение. – 1990, c. 205 – 206, http://www.koob.ru/books/iskusstvo_pravilno_mislit.rar).

Было много искажений парадокса, а также попыток решить данное противоречие, но в основном все решения сводились к следующему.
«Если да (то есть парикмахер должен брить себя сам – моя вставка), то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, то он бу­дет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только в том случае, когда он не бреет себя. Что, разумеется, невозможно.

Читайте также:  Почему шуруповерт крутит медленно

Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно и нет такого жителя деревни, который брил бы всех тех и только тех её жителей, которые не бреются сами. Обязанности парикмахера не кажутся на первый взгляд проти­воречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является всё-таки парадок­сальным. Условие, которому должен удовлетворять деревенский бра­добрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой нет в ней человека, который был бы старше самого себя или который родился бы до своего рождения. Рассуждение о парикмахере может быть названо псевдопарадоксом». Конец цитаты (там же).

В 1992 году 19 декабря шла любимая многими до сих пор телеигра «Что? Где? Когда?». При счете 2:6 возникла, как это очень часто бывает, спорная, даже конфликтная ситуация. И тогда Владимир Яковлевич Ворошилов задал вопрос, который должен был принести победу или поражение знатокам. Это был вопрос о цирюльнике – парадокс Рассела. Конечно, знатоки проиграли, хотя могли выиграть. Потому что он задал несколько искажённый вариант вопроса:«Звучит вопрос: бреет ли сам себя цирюльник, если сам цирюльник бреет всех, кто не бреется сам?
Ответ знатоков: нет, не бреет.» ( летопись/«Что? Где? Когда? Продюсерский центр ИГРА-ТВ», http://chgk.tvigra.ru/letopis/?19921219#cur). Им нужно было ответить:«Из информации о том, что цирюльник бреет всех, кто не бреется сам, невозможно сделать вывод о том, бреет ли он сам себя, бреет ли его кто-то другой или он вообще не бреется. Потому что нет достаточных оснований для таких выводов».
Но мне не давал покоя этот парадокс. Казалось, что ответ крутится в голове, нужно лишь «ухватить его за хвост». И мне через некоторое время это удалось.

Решение, как часто это бывает, просто до безумия. Всё рассуждение в деталях и с рассмотрением искажённых вариантов занимает несколько страниц. Я приведу лишь сокращённый вариант рассуждения.

Ответить на вопрос парадокса Рассела можно, если отнести парикмахера к какому либо классу мужчин: «бреются сами» или «не бреются сами». Но после логического анализа возможных оснований отнесения к этим классам множеств мужчин следует единственный вывод – это невозможно, потому что такого логически оправданного основания не существует. Исходя из данного вывода многие, в том числе и А. А. Ивин, пришли к заключению, что парадокс нерешаем, назвав его псевдопарадоксом. Но тогда следует и все другие парадоксы «решить» подобным образом раз и навсегда. Ведь никто же не думает, что может существовать в реальности ситуация разговора матери и крокодила, миссионера и людоедов и других. Значит, отрицание логического допущения не является решением. А решение таково:

если невозможно отнести парикмахера ни к одному из классов «бреются сами» и «не бреются сами», значит, его нужно включить в третий класс – «НЕ БРЕЮТСЯ». И тогда парикмахер не нарушает ни одного логического условия, потому что на данный класс мужчин они не распространяются.

Все мужчины деревни

А. БРЕЮТСЯ 1 -сами, 2- не сами Б. НЕ БРЕЮТСЯ

И теперь парикмахеру суждено умереть бородатым.

Для правильного понимания данной задачи необходимо было лишь мысленно переставить частицу «не» перед глаголом «бреются» на место после него. И тогда смысл парадоксального условия задачи проявился бы, как на фотобумаге при печатании. Ведь фраза «не бреются сами» сразу же приняла вид абсолютно простой, не запутанной и понятной любому. А именно – «НЕ бреются сами» значит «бреются НЕ сами», то есть всё же бреются хотя и не собственными руками. И, таким образом, сразу же проявляется очевидная и грубая ошибка в логическом рассуждении всех тех, кто пытался решить данный парадокс. Такой тип ошибок я назвал «ложный вывод», когда делается абсолютно неверный и даже противоположный от необходимого по логике вывод («Логические парадоксы. Пути решения», глава «Ошибки рассуждения – ложный вывод», http://proza.ru/2009/04/25/488). В данной задаче «ложный вывод» заключается в том, что фраза в логическом рассуждении должна звучать не в виде: «если парикмахер не должен брить себя сам, то будет относиться к тем, кто не бреется сам», что неверно, а в виде: «если парикмахер не должен брить себя сам, то будет относиться к тем, кто бреется не сам или НЕ БРЕЕТСЯ».

После решения «парадокса Рассела» я решил и другие известные парадоксы, применив к ним два общих постулата: 1. при подходе к решению любой проблемы необходимо чёткое понимание самой проблемы во всех деталях; 2. знание – относительное понятие («Логические парадоксы. Пути решения», глава «О принципах решения парадоксов», http://proza.ru/2009/04/27/370). Но это уже другая статья.

Но главное, что хотелось сказать: важны не логические постулаты или способы рассуждения, а общая парадигма мышления, которую тоже можно описать двумя принципами: А. «Нет ничего невозможного»; Б. «Нет ничего важнее мелочей».

фото — Международный чемпионат бород и усов в Баварии, Etoday,

Самым знаменитым из открытых уже в нашем веке парадоксов является антиномия, обнаруженная Б. Расселом и сообщенная им в письме к Г. Фреге. Эту же антиномию обсуждали одновременно в Геттингене немецкие математики Э. Цермело и Д. Гильберт.

Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы. Этот парадокс вызвал в математике, по мнению Д. Гильберта, «эффект полной катастрофы». Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями.

Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но ив какого места и в каком направлении? Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования?

С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики А. Френкель и И. Бар-Хиллел уже без всяких оговорок утверждали: «Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели».

Современный американский логик X. Карри писал немного позднее об этом парадоксе: «В терминах логики, известной в XIX веке, положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка».

Читайте также:  Как установить сканер hp scanjet 2400

Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса.

Можно говорить о множествах различных объектов, например о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго — каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий.

Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов-это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента.

Очевидно, что каждое множество является либо обычным, либо необычным.

Рассмотрим теперь множество всех обычных множеств. Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то согласно своему определению должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в Качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством.

Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие. И получено оно на основе самых правдоподобных предположений и с помощью бесспорных как будто шагов.

Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о несуществовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы.

Парадокс Рассела замечателен своей крайней общностью. Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий «множества» и «элемента множества». Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще.

Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства. Это становится очевидным, если переформулировать парадокс в чисто логических терминах.

О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет. Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе. Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, что неприложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально,

Логическая, касающаяся свойств разновидность антиномии Рассела столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность.

Б. Рассел предложил также следующий популярный вариант открытого им парадокса.

Представим, что совет одной деревни так определил обязанности парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно.

Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно, и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами.

Обязанности парикмахера не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является все-таки парадоксальным. Условие, которому должен удовлетворять «деревенский брадобрей», на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения.

Рассуждение о парикмахере может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.

Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.

Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя?

Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать.

Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс.

Допустим, что в какой-то момент был составлен каталог, скажем К 1 включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием K 1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что K 1 не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в K 1 это упоминание о нем самом, получим каталог К 2. В нем упоминается К 1 но не сам К 2.

Добавив к К 2 такое упоминание, получим К 3, который опять-таки неполон из-за того, что не упоминает самого себя. И так далее без конца.

Ссылка на основную публикацию
Решение кубических уравнений в маткаде
Многие уравнения и системы из них не имеют аналитического решения. Однако они могут решаться численными методами с заданной погрешностью (не...
Распиновка usb мышки по цветам провода
Не все производители USB-устройств придерживаются общепринятой цветовой маркировки проводов: Красный, Белый, Зелёный, Чёрный. Эта статья посвящена разгулу китайской фантазии. Если...
Расчет двухтактного эмиттерного повторителя
- напряжение питания Uп = 15 В; - ток покоя коллектора Iк=1 мА; - нижняя частота сигнала fн= 20 Гц;...
Решение парадоксов рассела было осуществлено благодаря созданию
Самым знаменитым из открытых уже в прошлом веке парадоксов является антиномия, обнаруженная Бертраном Расселом и сообщенная им в письме к...
Adblock detector