Поколение эвм таблица по информатике 7 класс

Поколение эвм таблица по информатике 7 класс

Введение

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Начало эпохи

Первая ЭВМ[1] ENIAC была создана в конце 1945 г. В США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. Американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев. Основоположник вычислительной техники в СССР, директор ИТМиВТ, академик АН СССР (1953) и АН УССР (12.02.1945). Герой Социалистического Труда. Лауреат Сталинской премии третьей степени, Ленинской премии и Государственной премии СССР. В 1996 году посмертно награждён медалью «Пионер компьютерной техники» за разработку МЭСМ (Малой Электронной Счётной Машины), первой ЭВМ в СССР и континентальной Европе, а также за основание советской компьютерной промышленности.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстродействием, оперативной памятью, способом ввода и вывода информации и т.д.

Первое поколение

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Второе поколение

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой дляЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

Четвертое поколение

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.

Читайте также:  Как перенести игры с ps3 на ps4

Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Заключение

Разработки в области вычислительной техники продолжаются. ЭВМ пятого поколения — это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. В них будет возможным ввод с голоса, голосовое общение, машинное «зрение», машинное «осязание».

Машины пятого поколения — это реализованный искусственный интеллект.

Сравнительные характеристики поколений ЭВМ

Характеристики I I I I I I IV
Годы применения 1946 – 1958 1958 – 1964 1964 – 1972 1972 – Настоящее время
Элементарная база Электронные лампы Транзисторы Интегральные схемы (ИС) СБИС, микропроцессор
Размеры Большие Значительно меньше Мини-ЭВМ микроЭВМ
Количество ЭВМ в мире Десятки Тысячи Десятки тысяч Миллионы
Быстродействие 10-20 тыс. (опер/сек.) 100 тыс. (опер/сек.) 10 млн. (опер/сек.) 10 9 (опер/сек.)
Объём оперативной памяти 100 Кбайт 1 Мбайт 10 Мбайт 1 Гбайт
Типичные модели ЭНИАК, МЭСМ Сетунь, БЭСМ-6, Минск 23 IBM 360 IBM PC, Makintosh
Носитель информации Перфокарта, Перфолента Магнитная Лента Диск Гибкий и лазерный диск

Список литературы и интернет – ресурсов

Оглавление

  1. _______________________________________________________________Введение
  2. _______________________________________________________Начало эпохи ЭВМ
  3. ___________________________________________________Первое поколение ЭВМ
  4. ___________________________________________________Второе поколение ЭВМ
  5. ___________________________________________________Третье поколение ЭВМ
  6. ________________________________________________Четвёртое поколение ЭВМ
  7. _____________________________________________________________Заключение
  8. ______________________________Сравнительные характеристики поколений ЭВМ
  9. ___________________________________Список литературы и Интернет – ресурсов

[1] «ЭВМ» и «компьютер» — одно и тоже (синонимы).

В 1943 году по заказу ВМФ США при финансовой и технической поддержке фирмы IBM под руководством Г. Эйкена была создана первая универсальная цифровая вычислительная машина Mark 1.Она достигала 17 м в длину и более 2,5 м в высоту. В качестве переключательных устройств использовались электромеханические реле, данные вводились на перфоленте в десятичной системе счисления. Эта машина могла выполнять сложение и вычитание 23-разрядных чисел за 0,3 с, умножать два числа за 3 с и использовалась для расчета траектории полета артиллерийских снарядов.

За два года до этого в Германии под руководством К. Цузе была создана электромеханическая вычислительная машина Z-3, основанная на двоичной системе счисления. Эта машина была значительно меньше машины Эйкена и гораздо дешевле в производстве. Она использовалась для расчетов, связанных с конструированием самолетов и ракет. Но дальнейшее ее развитие (в частности, идеи перевода на вакуумные электронные лампы) не получили поддержки правительства Германии.

В Великобритании в конце 1943 года вошла в строй вычислительная машина Colossus, в которой вместо электромеханических реле содержалось около 2000 электронных ламп. В ее разработке активное участие принял математик А. Тьюринг с его идеями по формализации описания расчетных задач. Но эта машина имела узкоспециализированный характер: была предназначена для дешифровки немецких кодов путем перебора различных вариантов. Скорость обработки достигала 5000 символов в секунду.

Первой ламповой универсальной цифровой вычислительной машиной считают ENIAC (Electronic Numerical Integrator and Computer), которая была создана в 1946 году по заказу Министерства обороны США под руководством П. Экерта. Она содержала более 17000 электронных ламп и работала с десятичной арифметикой. По своим размерам (около 6 м в высоту и 26 м в длину) машина более чем вдвое превосходила Mark-1, но и быстродействие ее было намного больше – до 300 операций умножения в секунду. На этом компьютере были проведены расчеты, подтверждающие принципиальную возможность создания водородной бомбы.

Следующая модель (1945-1951 гг.) тех же разработчиков – машина EDVAC (Electronic Discrete Variable Automatic Computer) имела более вместительную внутреннюю память, в которую можно было записывать не только данные, но и программу. Система кодировки была уже двоичной, что позволило значительно сократить количество электронных ламп.

В этой разработке в качестве консультанта принимал участие талантливый математик Д. фон Нейман. В 1945 году он опубликовал "Предварительный доклад о машине EDVAC ", в котором описал не только конкретную машину, но и сумел обрисовать формальную, логическую организацию компьютера, выделил и детально обрисовал ключевые компоненты того, что сейчас называют "архитектурой фон Неймана" (рис. 1).

Исходной точкой отсчета истории нашей отечественной вычислительной техники считается 1948 год, когда сотрудники Энергетического института АН СССР Исаак Брук и Башир Рамеев получили авторское свидетельство на изобретение "Автоматическая цифровая вычислительная машина". В том же 1948 году в Институте электротехники АН УССР под руководством академика Сергея Лебедева начались работы над проектом создания МЭСМ — малой электронной счетной машины.

В период с 1948 по 1952 гг. создавались опытные образцы, единичные экземпляры вычислительных машин, которые, также как и в США, использовались одновременно как для проведения особо важных расчетов (зачастую засекреченных), так и для отладки конструкторских и технологических решений.

В дальнейшем работы в области создания ЭВМ велись в нескольких направлениях.

Например, проекты С.А. Лебедева. МЭСМ, введенная в строй в декабре 1951 года, стала первой действующей ЭВМ в СССР. В 1953 году С.А. Лебедев стал директором московского Института точной механики и вычислительной техники (ИТМ и ВТ) и возглавил разработку серии знаменитых БЭСМ (больших электронных счетных машин): от БЭСМ-1 до БЭСМ-6. Каждая машина этой серии на момент своего создания была лучшей в классе универсальных ЭВМ.

БЭСМ-1 (1953 г.) имела 5000 электронных ламп, выполняла 8. 10 тыс. операций в секунду. Ее особенностью стало введение операций над числами с плавающей запятой с обеспечением большого диапазона используемых чисел. На БЭСМ-1 были испытаны в реальной эксплуатации три типа оперативной памяти объемом 1024 39-разрядных слова:

  1. на электроакустических ртутных трубках (линиях задержки); память такого типа использовалась в EDSAC и EDVAC;
  2. на электронно-лучевых трубках (потенциалоскопах);
  3. на ферритовых магнитных сердечниках.

Внешняя память была выполнена на магнитных барабанах и магнитных лентах.

Особое место в истории развития отечественной вычислительной техники занимает БЭСМ-6, серийно выпускавшаяся с 1967 года в течение 17 лет. В ее архитектуре был реализован принцип распараллеливания вычислительных процессов, и ее производительность – 1 млн. операций в секунду – была рекордной для середины 60-х годов. На БЭСМ-6 появились первые полноценные операционные системы, мощные трансляторы, ценнейшая библиотека стандартных подпрограмм, реализующих численные методы решения различных задач, всё – отечественного производства.

Читайте также:  Где находится адресная строка в яндексе

К концу 60-х годов в нашей стране выпускалось около 20 типов ЭВМ общего назначения — серии БЭСМ (Москва, С.А.Лебедев), Урал (Пенза, Б.И.Рамеев), Днепр, Мир (Киев, В.М.Глушков), Минск (Минск, В. Пржиялковский) и другие, а также специализированные машины преимущественно для оборонного ведомства. Кстати, в отличие от Запада, где "двигателями прогресса" в области вычислительной техники были не только военные, но и представители делового мира, в СССР ими были только военные. Но постепенно и ученые, и хозяйственники, и чиновники стали осознавать роль вычислительных машин в экономике страны и насущную необходимость в разработке машин нового поколения.

Встал вопрос о переходе к индустрии ЭВМ. В декабре 1969 году на правительственном уровне было принято решение выбрать в качестве промышленного стандарта для универсальных вычислительных машин единой серии (ЕС ЭВМ) серии машин IBM S/360. Первая машина этой серии – ЕС-1020 была выпущена в 1971 году.
Производство ЕС ЭВМ было налажено совместно с другими социалистическими странами в рамках СЭВ (Совета по экономической взаимопомощи). Многие ученые выступили против копирования систем IBM, но предложить что-то взамен в качестве единого стандарта не смогли.
Конечно, идеальным вариантом была бы реализация архитектурных принципов IBM в сотрудничестве с самой компанией, и не семейства почти пятилетней давности, а самых современных моделей, и в сочетании с всесторонней поддержкой собственных разработок. Но на всё у государства не хватало средств, и пошли по более простому варианту. Так начался закат отечественной индустрии вычислительной техники.
Отметим, что отставание от Запада было обусловлено вовсе не решением копировать машины IBM. Технологическая база производства элементов, на которых строились компьютеры, стала с угрожающей быстротой отставать от мировой. Чем больше требовалось вкладывать средств в развитие микроэлектроники, тем труднее было поддерживать необходимый уровень. Отставание элементной базы, неповоротливость централизованной экономики, отсутствие конкуренции, зависимость разработчиков и производителей от чиновников Госплана не позволили повторить компьютерную революцию, которая происходила в годы создания ЕС на Западе.

Если в качестве основной характеристики ЭВМ принять ее элементную базу, то в истории их развития можно выделить четыре поколения (таблица).
Таблица — Основные характеристики ЭВМ различных поколений

Поколение 1 2 3 4
Период, гг 1946 -1960 1955-1970 1965-1980 1980-наст. вр.
Элементная база Вакуумные электронные лампы Полупроводниковые диоды и транзисторы Интегральные схемы Сверхбольшие интегральные схемы
Архитектура Архитектура фон Неймана Мультипрограммный режим Локальные сети ЭВМ, вычислительные системы коллективного пользования Многопроцессорные системы, персональные компьютеры, глобальные сети
Быстродействие 10 – 20 тыс. оп/с 100-500 тыс. оп/с Порядка 1 млн. оп/с Десятки и сотни млн. оп/с
Программное обеспечение Машинные языки Операционные системы, алгоритмические языки Операционные системы, диалоговые системы, системы машинной графики Пакеты прикладных программ, базы данных и знаний, браузеры
Внешние устройства Устройства ввода с перфолент и перфокарт, АЦПУ, телетайпы, НМЛ, НМБ Видеотерминалы, НЖМД НГМД, модемы, сканеры, лазерные принтеры
Применение Расчетные задачи Инженерные, научные, экономические задачи АСУ, САПР, научно – технические задачи Задачи управления, коммуникации, создание АРМ, обработка текстов, мультимедиа
Примеры ENIAC , UNIVAC ( США);
БЭСМ — 1,2, М-1, М-20 (СССР)
IBM 701/709 (США)
БЭСМ-4, , М-220, Минск, БЭСМ-6 (СССР)
IBM 360/370, PDP -11/20, Cray -1 (США);
ЕС 1050, 1066,
Эльбрус 1,2 (СССР)
Cray T3 E, SGI (США),
ПК, серверы, рабочие станции различных производителей

Что мы назовем компьютерами пятого поколения?
В настоящее время прорабатывается несколько принципиально отличающихся направлений:

  1. оптический компьютер, в котором все компоненты будут заменены их оптическими аналогами (оптические повторители, оптоволоконные линии связи, память на принципах голографии;
  2. молекулярный компьютер, принцип действия которого будет основан на способности некоторых молекул находиться в различных состояниях;
  3. квантовый компьютер, состоящий из компонентов субатомного размера и работающий по принципам квантовой механики.

Принципиальная возможность создания таких компьютеров подтверждена как теоретическими работами, так и действующими компонентами запоминающих и логических схем.

Параметры сравнения Поколения ЭВМ
первое второе третье четвертое
Период времени 1946 — 1959 1960 — 1969 1970 — 1979 с 1980 г.
Элементная база (для УУ, АЛУ) Электронные (или электрические) лампы Полупроводники (транзисторы) Интегральные схемы Большие интегральные схемы (БИС)
Основной тип ЭВМ Большие Малые (мини) Микро
Основные устройства ввода Пульт, перфокарточный, перфоленточный ввод Добавился алфавитно-цифровой дисплей, клавиатура Алфавитно-цифровой дисплей, клавиатура Цветной графический дисплей, сканер, клавиатура
Основные устройства вывода Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод Графопостроитель, принтер
Внешняя память Магнитные ленты, барабаны, перфоленты, перфокарты Добавился магнитный диск Перфоленты, магнитный диск Магнитные и оптические диски
Ключевые решения в ПО Универсальные языки программирования, трансляторы Пакетные операционные системы, оптимизирующие трансляторы Интерактивные операционные системы, структурированные языки программирования Дружественность ПО, сетевые операционные системы
Режим работы ЭВМ Однопрограммный Пакетный Разделения времени Персональная работа и сетевая обработка данных
Цель использования ЭВМ Научно-технические расчеты Технические и экономические расчеты Управление и экономические расчеты Телекоммуникации, информационное обслуживание

Таблица — Основные характеристики ЭВМ различных поколений

Поколение 1 2 3 4
Период, гг 1946 -1960 1955-1970 1965-1980 1980-наст. вр.
Элементная база Вакуумные электронные лампы Полупроводниковые диоды и транзисторы Интегральные схемы Сверхбольшие интегральные схемы
Архитектура Архитектура фон Неймана Мультипрограммный режим Локальные сети ЭВМ, вычислительные системы коллективного пользования Многопроцессорные системы, персональные компьютеры, глобальные сети
Быстродействие 10 – 20 тыс. оп/с 100-500 тыс. оп/с Порядка 1 млн. оп/с Десятки и сотни млн. оп/с
Программное обеспечение Машинные языки Операционные системы, алгоритмические языки Операционные системы, диалоговые системы, системы машинной графики Пакеты прикладных программ, базы данных и знаний, браузеры
Внешние устройства Устройства ввода с перфолент и перфокарт, АЦПУ, телетайпы, НМЛ, НМБ Видеотерминалы, НЖМД НГМД, модемы, сканеры, лазерные принтеры
Применение Расчетные задачи Инженерные, научные, экономические задачи АСУ, САПР, научно – технические задачи Задачи управления, коммуникации, создание АРМ, обработка текстов, мультимедиа
Примеры ENIAC , UNIVAC ( США);
БЭСМ — 1,2, М-1, М-20 (СССР)
IBM 701/709 (США)
БЭСМ-4, , М-220, Минск, БЭСМ-6 (СССР)
IBM 360/370, PDP -11/20, Cray -1 (США);
ЕС 1050, 1066,
Эльбрус 1,2 (СССР)
Cray T3 E, SGI (США),
ПК, серверы, рабочие станции различных производителей
Читайте также:  Гарантия на светодиодные лампы икеа

На протяжении 50 лет появилось, сменяя друг друга, несколько поколений ЭВМ. Бурное развитие ВТ во всем мире определяется только за счет передовых элементной базы и архитектурных решений.
Так как ЭВМ представляет собой систему, состоящую из технических и программных средств, то под поколением естественно понимать модели ЭВМ, характеризуемые одинаковыми технологическими и программными решениями (элементная база, логическая архитектура, программное обеспечение). Между тем, в ряде случаев оказывается весьма сложным провести классификацию ВТ по поколениям, ибо грань между ними от поколения к поколению становиться все более размытой.
Первое поколение.
Элементная база- электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Надежность — невысокая, требовалась система охлаждения; ЭВМ имели значительные габариты. Быстродействие- 5 — 30 тыс. арифметических оп/с; Программирование — в кодах ЭВМ (машинный код), позднее появились автокоды и ассемблеры. Программированием занимался узкий круг математиков, физиков, инженеров — электронщиков. ЭВМ первого поколения использовались в основном для научно-технических расчетов.

Второе поколение.
Полупроводниковая элементная база. Значительно повышается надежность и производительность, снижаются габариты и потребляемая мощность. Развитие средств ввода/вывода, внешней памяти. Ряд прогрессивных архитектурных решений и дальнейшее развитие технологии программирования- режим разделения времени и режим мультипрограммирования (совмещение работы центрального процессора по обработке данных и каналов ввода/вывода, а также распараллеливания операций выборки команд и данных из памяти)
В рамках второго поколения четко стала проявляться дифференциация ЭВМ на малые, средние и большие. Существенно расширилась сфера применения ЭВМ на решение задач — планово — экономических, управления производственными процессами и др.
Создаются автоматизированные системы управления (АСУ) предприятиями, целыми отраслями и технологическими процессами (АСУТП). Конец 50-х годов характеризуется появлением целого ряда проблемно-ориентированных языков программирования высокого уровня (ЯВУ): FORTRAN, ALGOL-60 и др. Развитие ПО получило в создании библиотек стандартных программ на различных языках программирования и различного назначения, мониторов и диспетчеров для управления режимами работы ЭВМ, планированием ее ресурсов, заложивших концепции операционных систем следующего поколения.

Третье поколение.
Элементная база на интегральных схемах (ИС). Появляются серии моделей ЭВМ программно совместимых снизу вверх и обладающих возрастающими от модели к модели возможностями. Усложнилась логическая архитектура ЭВМ и их периферийное оборудование, что существенно расширило функциональные и вычислительные возможности. Частью ЭВМ становятся операционные системы (ОС). Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Мощным становиться программное обеспечение: появляются системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПРы) различного назначения, совершенствуются АСУ, АСУТП. Большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения.
Развиваются языки и системы программирования Примеры: -серия моделей IBM/360, США, серийный выпуск -с 1964г; -ЕС ЭВМ, СССР и страны СЭВ с 1972г.
Четвертое поколение.
Элементной базой становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы. ЭВМ проектировались уже на эффективное использование программного обеспечения (например, UNIX-подобные ЭВМ, наилучшим образом погружаемые в программную UNIX-среду; Prolog-машины, ориентированные на задачи искусственного интеллекта); современных ЯВУ. Получает мощное развитие телекоммуникационная обработка информации за счет повышения качества каналов связи, использующих спутниковую связь. Создаются национальные и транснациональные информационно-вычислительные сети, которые позволяют говорить о начале компьютеризации человеческого общества в целом.
Дальнейшая интеллектуализация ВТ определяется созданием более развитых интерфейсов "человек-ЭВМ", баз знаний, экспертных систем, систем параллельного программирования и др.
Элементная база позволила достичь больших успехов в минитюаризации, повышении надежности и производительности ЭВМ. Появились микро- и мини-ЭВМ, превосходящие по возможностям средние и большие ЭВМ предыдущего поколения при значительно меньшей стоимости. Технология производства процессоров на базе СБИС ускорила темпы выпуска ЭВМ и позволила внедрить компьютеры в широкие массы общества. С появление универсального процессора на одном кристалле (микропроцессор Intel-4004,1971г) началась эра ПК.
Первым ПК можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Э.Робертсом. П.Аллен и У.Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии основали знаменитую компанию Microsoft Inc). Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью (среднее быстродействие 50 — 130 мегафлопсов . 1 мегафлопс= 1млн. операций в секунду с плавающей точкой) и нетрадиционной архитектурой (принцип распараллеливания на основе конвейерной обработки команд). Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др. Так как важную коммутирующую роль в сетях играют и будут играть мощные ЭВМ, то сетевая проблематика часто обсуждается совместно с вопросами по супер-ЭВМ Среди отечественных разработок супер-ЭВМ можно назвать машины серии Эльбрус, вычислительные системы пс-2000 и ПС-3000, содержащие до 64 процессоров, управляемых общим потоком команд, быстродействие на ряде задач достигалось порядка 200 мегафлопсов. Вместе с тем, учитывая сложность разработки и реализации проектов современных супер-ЭВМ, требующих интенсивных фундаментальных исследований в области вычислительных наук, электронных технологий, высокой культуры производства, серьезных финансовых затрат, представляется весьма маловероятным создание в обозримом будущем отечественных супер-ЭВМ, по основным характеристикам не уступающим лучшим зарубежным моделям.
Следует заметить, при переходе на ИС-технологию производства ЭВМ определяющий акцент поколений все более смещается с элементной базы на другие показатели: логическая архитектура, программное обеспечение, интерфейс с пользователем, сферы приложения и т.д.
Пятое поколение.
Зарождается в недрах четвертого поколения и в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости, вполне обеспечиваемые СБИС и др. новейшими технологиями, должны удовлетворять следующим качественно новым функциональным требованиям:

Ссылка на основную публикацию
Погрешность аппроксимации и погрешность метода
Для вычисления погрешности аппроксимации следует найти величину среднеквадратичного отклонения по формуле (3.11). где Уi- значение некоторой физической величины f(x) в...
Передача файлов через bluetooth не завершена
Если вы захотели отправить файлы (фото, видео и другие) по Bluetooth со своего Android телефона на ноутбук или компьютер, сделать...
Перемещение по таблице в excel
Перемещение по ячейкам листа осуществляется с помощью курсора (управляемый черный прямоугольник). Чаще всего при заполнении данными листов Excel необходимо перемещаться...
Подключение наушников к телевизору philips
Телевизор – это одно из тех устройств, которые, как правило, требуют наиболее качественной акустической системы. К хорошему телевизору непременно стоит...
Adblock detector