Найти токи методом наложения

Найти токи методом наложения

Этот метод заключается в том, что воздействие нескольких источников на какой либо элемент цепи можно рассматривать как результат воздействия на элемент каждой ЭДС по отдельности независимо от других источников.

Если в рассчитываемой цепи присутствует несколько источников ЭДС, то расчет электрической цепи сводится к расчету нескольких цепей с одним источником. Ток в любой ветви рассматривается как алгебраическая сумма частных токов созданных каждой ЭДС по отдельности.

Рассмотрим метод наложения на примере данной схемы рисунок 1.

E1=100 B, E2=50 B; R1=4 Om, R2=10 Om; R3=12 Om, r01=1Om, r02=2 Om.

Порядок расчета:

  1. Определяем количество источников в схеме. В данной схеме два источника, значит нам нужно рассчитать две схемы.
  2. Предположим, что в цепи действует только Е1 рисунок 2. Укажем на этой схеме направление частных токов создаваемые источником Е1 (токи обозначим с одним штрихом I’1; I’2: I’3). Обратите внимание, если у источника (E1; E2) есть внутреннее сопротивление (r01; r02), то при исключения данного источника его внутренне сопротивление остоётся в схеме.
  3. Найдем ток I’1. Rэкв — сопротивление всей цепи.
  4. Найдем ток I’2; I’3 по формуле разброса токов.
  5. Мы нашли все частные токи в первой схеме (рисунок 2).
  6. Рассмотрим вторую схему без E1, но с E2 (рисунок 3). Укажем на этой схеме направление частных токов создаваемые источником Е2 (токи обозначим с двумя штрихами I»1; I»2: I»3)
  7. Найдем ток I»2. RЭКВ рассчитываем заново.
  8. Найдем токи I»1; I»3 по формуле разброса токов.
  9. Мы нашли все частные токи для второй схемы (рисунок 3).
  10. Найдем действующие токи в изначальной схеме (рисунок 1) путем алгебраического сложения частных токов первой (рисунок 2) и второй (рисунок 3) схемы. Для этого смотрим как направлены токи в одинаковых ветвях на рисунке 2 и 3. Если токи направлены в одном направлении, то тогда они складываются, а если токи направлены в разные стороны тогда отнимаем.
  11. Если конечные токи получаются положительные, то токи направлены так же как на рисунке 2, а если токи получились отрицательными, то тогда они направлены так же как на рисунке 3.
  12. Правильность решения можно проверить при помощи баланса мощности.
Читайте также:  Вентилятор для кулера видеокарты

Наряду с методом контурных токов для анализа электрических цепей используется другой метод – метод наложения . Этот метод основан на принципе наложения, который применяется только к линейным системам.

Метод наложения относительно прост, и в основном применяется для не сложных электрических цепей.

Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).

Порядок расчета

1 – Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.

2 – Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.

3 – Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.

Пример решения методом наложения

1. Для начала произвольно выберем направление токов, если в итоге какой либо ток получится со знаком минус, значит нужно изменить направление данного тока на противоположное.

2. Составим частную схему с первым источником ЭДС и рассчитаем частные токи в ней, убрав второй источник. Для удобства частичные токи будем обозначать штрихами.

Свернем схему к одному контуру, с сопротивлением источника и эквивалентным сопротивлением цепи для нахождения тока источника I1. Для тех, у кого возникают затруднения с нахождением эквивалентного сопротивления рекомендуем прочесть статью виды соединения проводников.

Найдем ток по закону Ома для полной цепи

Найдем напряжение на R 2345

Тогда ток I3 равен

Определим напряжение на R25

3. Составим частную схему со вторым источником ЭДС

Читайте также:  Как выбрать ноутбук для графического дизайнера

Аналогичным образом вычислим все частичные токи от второй ЭДС

4. Найдем токи в исходной цепи, для этого просуммируем частичные токи, учитывая их направление. Если направление частичного тока совпадает с направлением исходного тока, то берем со знаком плюс, в противном случае со знаком минус.

5. Проверим с правильность решения с помощью баланса мощностей.

Небольшая погрешность связана с округлениями промежуточных значений в ходе выполнения вычислений.

1.2 Метод наложения

Метод наложения основан на свойстве линейности электрических цепей. Метод наложения справедлив только для линейных цепей. Метод наложения применяется для определения токов в ветвях схемы с несколькими источниками.

Алгоритм метода наложения:

1) выбирают положительные направления токов в ветвях цепи;

2) находят частичные токи в ветвях, вызванные каждым источником по отдельности (схему рассчитывают столько раз, сколько источников действует в схеме);

3) токи в ветвях по методу наложения находят как алгебраическую сумму частичных токов (знак частичного тока при суммировании определяется по положительному направлению тока ветви).

Решение задач методом наложения

Задача 1.2.1 . В электрической цепи рис. 1.2.1 с тремя источниками энергии определить все токи в ветвях, воспользовавшись методом наложения.

1. Выполним расчет цепи при воздействии источника ЭДС E1, полагая E3 = 0, J = 0. Источники считаем идеальными, поэтому внутренние сопротивления ЭДС равны нулю, а источника тока – бесконечности. С учетом этого изобразим расчетную схему (рис. 1.2.2).

Определение токов в полученной схеме будем вести, пользуясь методом эквивалентных преобразований:

R ′ Э = R 5 + R 2 ⋅ ( R 3 + R 4 ) R 2 + ( R 3 + R 4 ) = 15 + 30 ⋅ ( 10 + 5 ) 30 + ( 10 + 5 ) = 25 О м ; I ′ 1 = E 1 R ′ Э = 150 25 = 6 A ; I ′ 5 = I ′ 1 = 6 A ; I ′ 2 = I ′ 1 ⋅ R 3 + R 4 R 2 + ( R 3 + R 4 ) = 6 ⋅ 10 + 5 30 + ( 10 + 5 ) = 6 A ; I ′ 3 = I ′ 1 ⋅ R 2 R 2 + ( R 3 + R 4 ) = 6 ⋅ 30 30 + ( 10 + 5 ) = 4 A ; I ′ 3 = I ′ 4 = 4 A .

Читайте также:  Не удается выполнить обновление ip адреса

2. Расчет электрической цепи при воздействии ЭДС источника Е3 выполним, полагая Е1 = 0, J = 0 (рис. 1.2.3).

В соответствии с рис. 1.2.3 имеем:

R ″ Э = R 3 + R 4 + R 2 ⋅ R 5 R 2 + R 5 = 10 + 5 + 30 ⋅ 15 30 + 15 = 25 О м ; I ″ 3 = E 3 R ″ Э = 50 25 = 2 A ; I ″ 4 = I ″ 3 = 2 A ; I ″ 2 = I ″ 4 ⋅ R 5 R 2 + R 5 = 2 ⋅ 15 15 + 30 = 0,66 A ; I ″ 5 = I ″ 4 ⋅ R 2 R 2 + R 5 = 2 ⋅ 30 15 + 30 = 1,33 A ; I ″ 1 = I ″ 5 = 1,33 A .

3. Расчет электрической цепи при действии источника тока выполним, полагая E1 = 0, Е2 = 0 (рис. 12.4).

В соответствии с рис. 1.2.4 имеем:

R ? Э = R 4 + R 2 ⋅ R 5 R 2 + R 5 = 5 + 30 ⋅ 15 30 + 15 = 15 О м .

Находим токи в параллельных ветвях:

I ? 3 = J ⋅ R ? Э R ? Э + R 3 = 15 ⋅ 15 15 + 10 = 9 A ; I ? 4 = J ⋅ R 3 R ? Э + R 3 = 15 ⋅ 10 15 + 10 = 6 A ; I ? 2 = I ? 4 ⋅ R 5 R 2 + R 5 = 6 ⋅ 15 15 + 30 = 2 A ; I ? 5 = I ? 4 ⋅ R 2 R 2 + R 5 = 6 ⋅ 30 15 + 30 = 4 A .

Ток I ? рассчитываем по первому закону Кирхгофа:

I ? 1 + I ? 5 − J = 0 ; I ? 1 = J − I ? 5 = 15 − 4 = 11 A .

4. В соответствии с принятыми направлениями токов в исходной схеме определим их значения по методу наложения как алгебраическую сумму частичных токов всех промежуточных расчетных схем:

I 1 = I ′ 1 + I ″ 1 − I ? 1 = 6 + 1,33 − 11 = − 3,67 A ; I 2 = I ′ 2 − I ″ 2 − I ? 2 = 2 − 0,66 − 2 = − 0,66 A ; I 3 = − I ′ 3 − I ″ 3 + I ? 3 = − 4 − 2 + 9 = 3 A ; I 4 = I ′ 4 + I ″ 4 + I ? 4 = 4 + 2 + 6 = 12 A ; I 5 = I ′ 5 + I ″ 5 + I ? 5 = 6 + 1,33 + 4 = 11,33 A .

Правильность решения задачи проверяем по первому закону Кирхгофа:

− J + I 3 + I 4 = 0 ; − 15 + 3 + 12 = 0 ; − I 2 − I 4 + I 5 = 0 ; − ( − 0,66 ) − 12 + 11,33 = 0.

Токи I1 и I2 получились отрицательными, т.е. их истинное направление в схеме противоположно принятому положительному направлению.

частичные токи, метод наложения

Ссылка на основную публикацию
Мфу струйное hp deskjet ink advantage 3525
HP Deskjet 3525 Ink Advantage e-All-in-One предназначен для дома и офиса Отличный принтер за свою цену он творит чудеса, расходный...
Множитель ядра процессора что выбрать в биосе
Под термином «разгон» большинство пользователей подразумевает именно увеличение рабочих характеристик центрального процессора. В современных моделях материнских плат эту процедуру можно...
Мной было принято решение
Личное местоимение «я» в творительном падеже имеет два варианта: мной и мною. Правильно Мной – правильный вариант слова в творительном...
Мультиварка редмонд rmc m29
Мультиварка REDMOND RMC-M29 Описание модели Современная мультиварка REDMOND RMC-M29 может выполнять функции сразу нескольких устройств для приготовления еды – духовки,...
Adblock detector