Метод гаусса вычисления интеграла

Метод гаусса вычисления интеграла

Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности(0 — методы правых и левых прямоугольников, 1 — методы средних прямоугольников и трапеций, 3 — метод парабол (Симпсона)). Если мы можем выбирать точки, в которых мы вычисляем значения функции , то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 1-го, а 3-го порядка точности:

.

В общем случае, используя точек, можно получить метод с порядком точности . Значения узлов метода Гаусса по точкам являются корнямиполинома Лежандрастепени .

Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.

При заданном числе интервалов разбиения следует расположить их концы так, чтобы получить наивысшую точность интегрирования. В математическом плане это означает выбор коэффициентов Aiи узлов ti, i=1. n квадратурных формул Гаусса:

такими, чтобы формулы были точны для многочленов наивысшей возможной степени N. Можно показать, что при n узлах точно интерпретируются все многочлены степени N2n-1.

Узлы tiявляются корнями многочлена Лежандра:

.

Коэффициенты Ai вычисляются по формуле:

, i=1. n.

Погрешность усечения Rn:

, t[-1,1].

Для вычисления интеграла отрезок [a,b] преобразуется в отрезок [-1,1] путем замены переменной:

.

В результате формула Гаусса приобретает вид

,

где ,.

Квадратурная формула Гаусса обеспечивает высокую точность вычислений при небольшом числе узлов.

Метод Монте-Карло

В некоторых случаях из-за особенности подынтегральной функции (например, из-за ее большой сложности, неявном способе задания и т.д.), описанные выше методы нельзя или нецелесообразно использовать. В задачах, не требующих высокой точности, широкое распространение получил метод Монте-Карло.

Проиллюстрируем применение этого метода на примере приближенного вычисления следующего интеграла:

График подынтегрального выражения приведен на рисунке. Очевидно, что точное значение интеграла равно четверти площади круга единичного радиуса.

Построим прямоугольную область, которая будет полностью включать в себя искомый интеграл. В данном случае это будет квадрат с единичным ребром, показанный на рисунке. Далее, с помощью датчика случайных чисел генерируются точки

,

попадающие в эту область. В данном случае абсциссы и ординаты точек должны быть случайными числами, равномерно распределенными на отрезке [0, 1].

Для каждой точки проверяется, попадает ли она в область под или над графиком функции, то есть проверяется условие:

Если условие выполняется, то выбранная точка соответствует «успеху», если нет – то «промаху». Таким образом, процедура может быть описана как игра в «попадание» случайно выбранной точки в область под графиком (отсюда и название метода — Монте-Карло).

Вполне очевидно, что отношение числа «попаданий» (Nусп) к общему числу попыток (N) должно в пределе стремиться к доли площади прямоугольной области (Sпр), которую занимает область под интегрируемой функцией (значение интеграла, I).

Отсюда получается формула метода Монте-Карло:

Для реализации метода существенное значение имеет качество используемого датчика случайных чисел. Идеальный датчик должен давать равномерное распределение чисел в заданном диапазоне. Точность расчета интеграла определяется так же числом точек (N), используемых при вычислениях и, очевидно, должна увеличиваться при его росте.

Читайте также:  Ремонт утюга филипс азур

Метод Монте-Карло широко используется в современных методах моделирования динамики молекулярных систем, взаимодействия растворенного вещества с молекулами растворителя, кинетики адсорбции веществ на твердых поверхностях и т.д.

Вычисляет определенный интеграл методом прямоугольников, трапеций или парабол (методом Симпсона).

Численные методы вычисления значения определенного интеграла применяются в том случае, когда первообразная подинтегральной функции не выражается через аналитические функции, и поэтому невозможно вычислить значение по формуле Ньютона-Лейбница. Для получения значения определенного интеграла таких функций можно воспользоваться численным интегрированием.

Численное интегрирование сводится к вычислению площади криволинейной трапеции, ограниченной графиком заданной функции, осью х и вертикальными прямыми ограничивающими отрезок слева и справа. Подинтегральная функция заменяется на более простую, обеспечивающую заданную точность, вычисление интеграла для которой не составляет труда.

Калькулятор ниже вычисляет значение одномерного определенного интеграла численно на заданном отрезке, используя формулы Ньютона-Котеса, частными случаями которых являются:

Интеграл численным методом по формулам Ньютона-Котеса

Численное интегрирование с использованием функций Ньютона Котеса

При использовании функций Ньютона-Котеса отрезок интегрирования разбивается на несколько равных отрезков точками x1,x2,x3..xn.
Подинтегральную функцию заменяют интерполяционным многочленом Лагранжа различной степени, интегрируя который, получают формулу численного интегрирования различного порядка точности.

В итоге, приближенное значение определенного интеграла вычисляется, как сумма значений подинтегральной функции в узлах, помноженных на некоторые константы Wi (веса):

  • Rn — остаток или погрешность.
  • n — общее количество точек.
  • Сумма в формуле — квадратурное правило (метод).

В справочнике Квадратурные функции Ньютона-Котеса, мы собрали наиболее часто встречающиеся квадратурные правила, для интегрирования по равным отрезкам. Зарегистрированные пользователи могут добавлять в этот справочник новые правила.

Границы отрезка интегрирования

В зависимости от того, входят ли граничные точки отрезка в расчет, выделяют замкнутые и открытые квадратурные правила.

Открытые правила, (правила, в которых граничные точки не включаются в расчет) удобно использовать в том случае, если подинтегральная функция не определена в некоторых точках.
Например, используя метод прямоугольников мы сможем вычислим приблизительное значение интеграла функции ln(x) на отрезке (0,1), несмотря на то, что ln(0) не существует.

Замкнутые правила, напротив, используют значения функции в граничных точках для вычислений интеграла, ровно так же как и в остальных узлах.

Можно придумать правила, которые открыты только с одной стороны. Простейшим случаем таких правил являются правила левых и правых прямоугольников.

Погрешность вычисления

В целом с увеличением количества узлов в правиле (при повышении степени интерполирующего полинома) возрастает точность вычисления интеграла. Однако для некоторых функций это может и не быть справедливо.
Впервые анализ этой особенности опубликовал Карл Рунге, немецкий математик, занимавшийся исследованием численных методов.
Он заметил, интерполирующий полином с равномерным разбиением отрезка для функции перестает сходиться в диапазоне значений 0.726.. ≤ |x| 10 применять не рекомендуется.

Для увеличения точности численного интегрирования, можно разбить отрезок на несколько частей — частичных интервалов, и для каждой части отдельно вычислить приближенное значение интеграла. Сумма значений интеграла по всем частичным интервалам даст нам значение интеграла на всем отрезке. Кроме того можно комбинировать различные правила друг с другом в любой последовательности.

Читайте также:  Как запустить службу теневого копирования

Для исследования работы с заданной функцией новых, основанных на формулах Ньютона-Котеса правил, можно воспользоваться базовым калькулятором, в котором веса задаются в явном виде:

“Численное интегрирование методом Гаусса”

Федеральное агентство по образованию

Тульский государственный университет

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студенту гр.220371 Подобеденко И.В.

1. Тема: "Численное интегрирование-методом Гаусса"

Разработайте алгоритм и программу:

1) вычисления определённого интеграла методом Гаусса и 2) построения графика функции я 3) построения нескольких (по 2 — 3) “шагов” интегрирования на участках возрастания и убывания функции.

2. Срок представления курсовой работы на проверку с 12 по 15 мая 2008 г.

3. Защита курсовой работы с 19 по 23 мая 2008 г.

4. Требования к курсовой работе:

3.1 Разработать алгоритм и программу решения поставленной задачи.

3.2 Язык программирования — Паскаль.

3.3 Предусмотреть: а) диалоговый ввод исходных данных с проверкой правильности вводимых величин, б) блок пояснений к работе с программой, в) решение контрольного примера.

5. Форма отчётности:

пояснительная записка (ПЗ) объёмом 25-40 страниц на листах с рамками и штампом, отпечатанная на принтере,

графическая часть — лист формата А1,

дискета с текстом ПЗ, рисунком алгоритма и программой (текстовый и исполняемый файлы).

6. Содержание пояснительной записки к курсовой работе:

1) титульный лист,

2) задание на курсовую работу (настоявши бланк).

3) аннотация (краткая характеристика проделанной работы, объём ПЗ, количество таблиц, рисунков, схем. программ и приложений) с основной надписью по форме 2 (ГОСТ 2.104-68) — 1 с,

4) содержание (лист содержания и все последующие листы — с основной надписью по форме 2а — ГОСТ 2.104-68),

5) введение (область применения поставленной задачи, возможность использования ЭВМ для решения поставленной задачи) – 1-2 с,

6) анализ задания (выбор входных и выходных данных) – 2-3 с.

7) обзор литературных источников и разработка (выбор) математической модели задачи – 2-4 с,

8) описание методов вычислительной математики, которые будут использованы при решении поставленной задачи — 3-4 с,

9) разработка алгоритма решения задачи и описание его особенностей (разработанных или выбранных из готовых процедур и функций) — 5-7 с,

10) разработка программы по схеме алгоритма — 1-2 с.

11) разработка инструкции пользования программой — 1 с.

12) распечатка программы (текстовый файл) – допускается привести как приложение – 2-3 страницы

13) распечатка исходных данных и результатов решения контрольного примера – 1-2 с.

14) заключение (подробные выводы по проделанной работе) – 1-2 с.

15) список использованной литературы – 1 с.

16) приложения (инструкции пользования программой и др.)

7. Графическая часть: алгоритм решения поставленной задачи – лист формата A1

Аннотация

В работе рассмотрены методы численного интегрирования функций. Для подробного рассмотрения был взят метод Гаусса.

В рамках курсовой работы реализован словесный и на языке блок-схем алгоритм и программа на языке программирования Паскаль, которая вычисляет заданный интеграл по методы Гаусса и показывает графическое отображение процесса.

Читайте также:  Как увидеть скрытые диски в windows 10

Объем работы – 23 листа, количество рисунков – 2, представлена одна программа.

Содержание

1. Анализ задания. 8

2. Выбор математической модели задачи. 10

2.1 Метод прямоугольников. 10

2.2 Метод парабол (метод Симпсона) 11

2.4 Увеличение точности. 11

2.5 Метод Гаусса. 12

2.6 Метод Гаусса-Кронрода. 12

3. Описание методов вычислительной математики, которые будут использованы при решении поставленной задачи. 14

3.1. Разработка алгоритма решения задачи и описание его особенностей 15

3.2 Разработка программы по схеме алгоритма. 18

3.3 Разработка инструкции пользования программой. 19

3.4 Распечатка программы.. 19

3.5 Распечатка исходных данных и результатов решения контрольного примера 26

Список использованной литературы.. 28

Введение

Появление и непрерывное совершенствование быстродействующих электронных вычислительных машин (ЭВМ) привело к подлинно революционному преобразованию пауки вообще и математики в особенности. Изменилась технология научных исследований, колоссально увеличились возможности теоретического изучения, прогноза сложных процессов, проектирования инженерных конструкций. Решение крупных научно-технических проблем, примерами которых могут служить проблемы овладения ядерной энергией и освоения космоса, стало возможным лишь благодаря применению математического моделирования и новых численных методов, предназначенных для ЭВМ.

В настоящее время можно говорить, что появился новый способ теоретического исследования сложных процессов, допускающих математическое описание, — вычислительный эксперимент, т.е. исследование естественнонаучных проблем средствами вычислительной математики. Разработка и исследование вычислительных алгоритмов и их применение к решению конкретных задач составляет содержание огромного раздела современной математики — вычислительной математики.

Численные методы дают приближенное решение задачи. Это значит, что вместо точного решения и (функции или функционала) некоторой задачи мы находим решение у другой задачи, близкое в некотором смысле (например, по норме) к искомому. Основная идея всех методов — дискретизация или аппроксимация (замена, приближение) исходной задачи другой задачей, более удобной для решения на ЭВМ, причем решение аппроксимирующей задачи зависит от некоторых параметров, управляя которыми, можно определить решение с требуемой точностью. Например, в задаче численного интегрирования такими параметрами являются узлы и веса квадратурной формулы. Далее, решение дискретной задачи является элементом конечномерного пространства.

Численное интегрирование (историческое название: квадратура) — вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади криволинейной трапеции, ограниченной осью абсцисс, графиком интегрируемой функции и отрезками прямых, которые являются пределами интегрирования.

Необходимость применения численного интегрирования чаще всего может быть вызвана отсутствием у первообразной функции представления в элементарных функциях и, следовательно, невозможностью аналитического вычисления значения определённого интеграла по формуле Ньютона-Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

1. Анализ задания

Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида

Ссылка на основную публикацию
Майнкрафт возникла проблема с загрузкой этого мира
И всем привет, с вами Вячеслав и сегодня в этой новости я помогу вам устранить одну проблему. Надеюсь, данная новость...
Лимонная кислота против тараканов
Тараканы способны выжить при неблагоприятных условиях, долго оставаться без пищи. У них можно найти слабые места, например, они не переносят...
Лицензионный ключ pc scan repair by reimage
Reimage Repair — это мощная программа, которая находит, а также исправляет все ошибки в операционной системе. По словам разработчиков данное...
Мастер импорта сертификатов windows 7
Для того чтобы запустить программу Мастер импорта сертификатов (Certificate Manager Import Wizard), нажмите кнопку Импорт (Import), расположенную в окне Диспетчера...
Adblock detector