Как рассчитать коэффициент эластичности в excel

Как рассчитать коэффициент эластичности в excel

По территориям региона приводятся данные за 200Х г.

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у

Задание:

3. Оцените тесноту связи с помощью показателей корреляции и детерминации.

4. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.

5. Оцените с помощью средней ошибки аппроксимации качество уравнений.

6. Оцените с помощью F-критерия Фишера статистическую надёжность результатов регрессионного моделирования.

7. Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости .

8. Оцените полученные результаты, выводы оформите в аналитической записке.

Решение:

Решим данную задачу с помощью Excel.

1. Сопоставив имеющиеся данные х и у, например, ранжировав их в порядке возрастания фактора х, можно наблюдать наличие прямой зависимости между признаками, когда увеличение среднедушевого прожиточного минимума увеличивает среднедневную заработную плату. Исходя из этого, можно сделать предположение, что связь между признаками прямая и её можно описать уравнением прямой. Этот же вывод подтверждается и на основе графического анализа.

Чтобы построить поле корреляции можно воспользоваться ППП Excel. Введите исходные данные в последовательности: сначала х, затем у.

Выделите область ячеек, содержащую данные.

Затем выберете: Вставка / Точечная диаграмма / Точечная с маркерами как показано на рисунке 1.

Рисунок 1 Построение поля корреляции

Анализ поля корреляции показывает наличие близкой к прямолинейной зависимости, так как точки расположены практически по прямой линии.

2. Для расчёта параметров уравнения линейной регрессии
воспользуемся встроенной статистической функцией ЛИНЕЙН.

1) Откройте существующий файл, содержащий анализируемые данные;
2) Выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики.
3) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.
4) В окне Категория выберете Статистические, в окне функция – ЛИНЕЙН. Щёлкните по кнопке ОК как показано на Рисунке 2;

Рисунок 2 Диалоговое окно «Мастер функций»

5) Заполните аргументы функции:

Известные значения у – диапазон, содержащий данные результативного признака;

Известные значения х – диапазон, содержащий данные факторного признака;

Константа – логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0;

Статистика – логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика = 0, то выводятся только оценки параметров уравнения.

Щёлкните по кнопке ОК;

Рисунок 3 Диалоговое окно аргументов функции ЛИНЕЙН

6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу , а затем на комбинацию клавиш + + .

Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:

Значение коэффициента b Значение коэффициента a
Среднеквадратическое отклонение b Среднеквадратическое отклонение a
Коэффициент детерминации R 2 Среднеквадратическое отклонение y
F-статистика Число степеней свободы
Регрессионная сумма квадратов Остаточная сумма квадратов

Рисунок 4 Результат вычисления функции ЛИНЕЙН

Получили уровнение регрессии:

Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

3. Коэффициент детерминации означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х – среднедушевого прожиточного минимума, а 48% — действием других факторов, не включённых в модель.

По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции: .

Связь оценивается как тесная.

4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.

Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле:

Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее, и то же самое произведём со значениями у.

Рисунок 5 Расчёт средних значений функции и аргумент

Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.

С помощью инструмента анализа данных Регрессия можно получить:
— результаты регрессионной статистики,
— результаты дисперсионного анализа,
— результаты доверительных интервалов,
— остатки и графики подбора линии регрессии,
— остатки и нормальную вероятность.

Порядок действий следующий:

1) проверьте доступ к Пакету анализа. В главном меню последовательно выберите: Файл/Параметры/Надстройки.

2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа, а затем нажмите кнопку ОК.

• Если Пакет анализа отсутствует в списке поля Доступные надстройки, нажмите кнопку Обзор, чтобы выполнить поиск.

• Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да, чтобы установить его.

4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия, а затем нажмите кнопку ОК.

5) Заполните диалоговое окно ввода данных и параметров вывода:

Входной интервал Y – диапазон, содержащий данные результативного признака;

Входной интервал X – диапазон, содержащий данные факторного признака;

Метки – флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа – ноль – флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона;

6) Новый рабочий лист – можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК.

Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия

Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Рисунок 7 Результат применения инструмента регрессия

5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»

Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:

Рисунок 9 Расчёт средней ошибки аппроксимации

Средняя ошибка аппроксимации рассчитывается по формуле:

Качество построенной модели оценивается как хорошее, так как не превышает 8 – 10%.

6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера:

Читайте также:  Ржд найти билет по паспорту

Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н о статистически незначимом отличии показателей от нуля:

.

для числа степеней свободы

На рисунке 7 имеются фактические значения t-статистики:

t-критерий для коэффициента корреляции можно рассчитать двумя способами:

I способ:

где – случайная ошибка коэффициента корреляции.

Данные для расчёта возьмём из таблицы на Рисунке 7.

II способ:

Фактические значения t-статистики превосходят табличные значения:

Поэтому гипотеза Н отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как

Для параметра a 95%-ные границы как показано на рисунке 7 составили:

Доверительный интервал для коэффициента регрессии определяется как

Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Тогда прогнозное значение прожиточного минимума составит:

Ошибку прогноза рассчитаем по формуле:

где

Дисперсию посчитаем также с помощью ППП Excel. Для этого:

1) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.

2) В окне Категория выберете Статистические, в окне функция – ДИСП.Г. Щёлкните по кнопке ОК.

3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК.

Рисунок 10 Расчёт дисперсии

Получили значение дисперсии

Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.

Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением:

Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.

Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2003. – 192 с.: ил.

1.5.3. Расчет параметров экспоненциальной регрессии с использованием функции ЛГРФПРИБЛ.

Для экспоненциальной аппроксимации в Excel существует функция ЛГРФПРИБЛ(изв. зн. Y, изв. зн. X, константа, статистика) она возвращает массив значений описывающих кривую вида:

изв. зн. Y – это известные значения функции

изв. зн. X – это известные значения аргументов

константа – определяет чему должно равняться b, если константа имеет значение ЛОЖЬ то b полагается равным 1, иначе b вычисляется обычным образом.

статистика – если значение равно ИСТИНА то будет представлена дополнительная регрессионная статистика, если ЛОЖЬ то нет.

Для получения экспоненциальной регрессионной зависимости, с выводом всей статистической информации следует выделить диапазон I54:K58, нажать клавишу F2, и ввести формулу =ЛГРФПРИБЛ(P2:P38;N2:O38;1;1),после окончания ввода формулы нажать комбинацию клавиш Ctrl+Shift+Enter так как данная функция возвращает массив значений. В результате в данном диапазоне будет получена полная статистическая информация:

Экспоненциальная зависимость
1.0002 1.00007 1030.47
1.9E-05 0.000 0.046
0.940 0.057 #Н/Д
266.115 #Н/Д
1.702 0.109 #Н/Д

Полученные числа имеют следующий смысл:

mn mn-1 b
Sen Sen-1 Seb
R 2 Sey
F Df
Ssreg Ssresid

Se – стандартная ошибка для коэффициента m

Seb – стандартная ошибка для свободного члена b

R 2 – коэффициент детерминированности, который показывает как близко уравнение описывает исходные данные. Чем ближе он к 1, тем больше сходится теоретическая зависимость и экспериментальные данные.

Sey – стандартная ошибка для y

F – критерий Фишера определяет случайная или нет взаимосвязь между зависимой и независимой переменными

Df – степень свободы системы

Ssreg – регрессионная сумма квадратов

Ssresid – остаточная сумма квадратов

Аналогичным образом построим экспоненциальную регрессионную зависимость при аргументе Константа равном 0, в диапазоне M54:O58, введя формулу =ЛГРФПРИБЛ(P2:P38;N2:O38;0;1):

По десяти кредитным учреждениям получены данные, характеризующие зависимость объема прибыли (Y, млн.руб.) от величины доходов по кредитам (X1, млн.руб.), доходов по депозитам (X2, млн.руб.) и размера внутрибанковских расходов (X3, млн.руб.).

Y
X1
X2
X3

1. Осуществить выбор факторных признаков для построения многофакторной регрессионной модели.

2. Рассчитать параметры регрессионной модели. Оценить ее качество.

3. Для характеристики модели определить:

4. средние коэффициенты эластичности;

7. Оценить с помощью t-критерия Стьюдента статистическую значимость коэффициентов уравнения множественной регрессии.

8. Построить регрессионную модель со статистически значимыми факторами. Оценить ее качество.

9. Определить точечный и интервальный прогноз результативного показателя.

I. Выбор факторных признаков для построения модели осуществляется с помощью матрицы коэффициентов парной корреляции. Для её построения необходимо:

выбрать Сервис->Анализ данных->Корреляция

заполнить необходимые поля диалогового меню (рисунок 1)

Рис.1. Ввод параметров инструмента «Корреляция»

Результаты представлены на рисунке 2.

Рис.2. Таблица коэффициентов парных корреляций

Для выявления явления мультиколлинеарности необходимо проанализировать коэффициенты парной корреляции между факторными признаками. Если имеют место коэффициенты, значение которых по модулю больше 0,8, то, следовательно, мультиколлинеарность присутствует, и это явление необходимо устранять. Если же значения коэффициентов парной корреляции между факторными признаками, взятые по модулю, меньше величины 0,8, то явление мультиколлинеарности отсутствует, и, следовательно, все факторные признаки можно включать в модель множественной регрессии.

Так как , т.е. между факторными признаками X1 и X3 существует явление мультиколлинеарности, то для построения модели выбираем тот факторный признак, который оказывает большее влияние на результативный признак (фактор, для которого коэффициент парной корреляции с результативным признаком, взятый по модулю, является большим).

Следовательно, фактор X3 оказывает большее влияние на результативный признак (Y) и этот фактор рекомендуется в модели оставить. Фактор X1 оказывает меньшее влияние на результативный признак (Y) и этот фактор рекомендуется из модели исключить.

Таким образом, для построения модели множественной регрессии выбираются два факторных признака — Х2 (величина доходов по депозитам) и Х3 (величина внутрибанковских расходов).

Читайте также:  Телевизор не видит телефон xiaomi

II. Расчет параметров регрессионной модели можно осуществить с помощью инструмента анализа данных Регрессия, отличие заключается в том, что в качестве диапазона значений фактора X необходимо указать диапазон значений факторов X2 и X3 (рисунок 3).

Рис.3. Ввод параметров регрессии

Результаты построение множественной регрессии представлены на рисунке 4.

Рис.4. Вывод итогов регрессии

На основании полученных данных можно записать уравнение множественной регрессии

Y=-16,2872 + 0,197247*X2 + 0,592429*X3

Оценим качество построенной модели множественной регрессии по следующим направлениям:

Коэффициент детерминации = 0.794176 достаточно близок к 1, следовательно, качество модели можно признать высоким.

Критерий Фишера F = 13,50486 > Fтабл = 4,74 , следовательно, уравнение регрессии признается статистически значимым и может быть использовано для анализа и прогнозирования экономических процессов.

Для вычисления Fтабл необходимо определить:

— степень свободы числителя m=2 (число факторных признаков);

— степень свободы знаменателя n-m-1=10-2-1=7;

— уровень значимости =0,05.

III. Оценим качество построенной модели множественной регрессии с помощью коэффициентов эластичности, b — и D — коэффициентов.

Коэффициент эластичности определяется:

, (1)

где — среднее значение соответствующего факторного признака,

— среднее значение результативного признака.

bi – коэффициенты регрессии соответствующих факторных признаков.

ß-коэффициент определяется по следующей формуле:

, (2)

где — среднеквадратическое отклонение (СКО) соответствующего факторного признака (рассчитывается как корень квадратный из дисперсии признака),

— СКО результативного признака.

∆-коэффициент определяется по следующей формуле:

, (3)

где — коэффициент парной корреляции результативного и соответствующего факторного признаков,

— коэффициент детерминации.

На рисунке 5 представлены формулы расчетов описанных выше коэффициентов

Рис.5. Формулы расчетов коэффициентов

Результаты вычислений представлены в таблице 2.

Результаты расчета бета-, дельта- и коэффициентов эластичности

Y X2 X3
Ср.знач 47,8 59,4 88,4
Эласт. 0,245 0,881
Дисп 134,6 67,6 247,8
СКО 11,60 8,221 15,74
bi 0,197 0,592
0,139 0,803
0,599 0,883
0,105 0,894

Частный коэффициент эластичности показывает, на сколько процентов изменится среднее значение результативного признака, если среднее значение конкретного факторного признака изменится на 1 %, т.е., при увеличении на 1% величины доходов по депозитным операциям (Х2) прибыль банка увеличится на 0,245 % (Э2 = 0,245), при увеличении на 1% размера внутрибанковских расходов (X3) объём прибыли увеличится на 0,88% (Э3 =0,881).

β-коэффициент показывает, на какую величину изменится СКО результативного признака, если СКО конкретного факторного признака изменится на 1 единицу, т.е. при увеличении на 1 единицу СКО доходов по депозитам (X2), СКО объёма прибыли увеличится на 0,14 ( =0,139774); при увеличении на 1 единицу СКО внутрибанковских расходов СКО прибыли организации увеличится на 0,804 единицы ( = 0,803801 ).

∆-коэффициент показывает удельный вес влияния конкретного факторного признака в совместном влиянии всех факторных признаков на результативный показатель, т.е. удельный вес влияния внутрибанковских расходов (X3) на объём прибыли (результативный признак) составляет 89,4% (∆3 = 0,8944), а удельное влияние доходов по депозитам (Х2) на прибыль составляет 10,5 % ( ∆2 = 0,1055).

IV. Для оценки статистической значимости факторных признаков модели множественной регрессии используется t-критерий Стьюдента.

С помощью функции СТЬЮДРАСПОБР(0,05;7) определим табличное значение t табл = 2,364624.

Сравним расчетные значения t-статистики, взятые по модулю, с табличным значением этого критерия (расчетные значения берутся из столбца t-статистика таблицы 3 регрессионного анализа).

Результаты регрессионного анализа

Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение -16,2872 14,93 -1,0904 0,311 -51,60 19,03 -51,60 19,03
X2 0,197 0,295 0,66857 0,525 -0,500 0,894 -0,500 0,894
X3 0,592 0,154 3,84478 0,006 0,228 0,956 0,228 0,956

t х2 = 0,668573 tтаб=2,364624, следовательно, фактор Х3 признается статистически значимым и информативным. Такой фактор рекомендуется в модели регрессии оставить.

Построим регрессионную модель со статистически значимыми факторами. Для конкретного примера статистически значимым фактором является только фактор Х3 (величина внутрибанковских расходов). Подробное построение регрессионных моделей рассмотрено ранее. Осуществим следующие установки в окне Регрессия (рисунок 6).

Рис.6. Диалоговое окно Регрессия

Получим следующие результаты (рисунок 7)

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,88376
R-квадрат 0,78103
Нормированный R-квадрат 0,75366
Стандартная ошибка 5,75868
Наблюдения
Дисперсионный анализ
df SS MS F Знач. F
Регрессия 946,300 946,300 28,53 0,000693
Остаток 265,299 33,1624
Итого 1211,6
Коэфф. Стандар ошибка t-статист. P-Знач. Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение -9,78049 10,93189 -0,894 0,397 -34,9895 15,42 -34,9895 15,4285
X3 0,65136 0,12193 5,34184 0,000693 0,370178 0,9325 0,370178 0,932548

Рис.7. Вывод итогов регрессии

Запишем уравнение зависимости прибыли организации от величины внутрибанковских расходов (Х3):

Y = 0,651363*Х3 – 9,78049

Качество этой модели может быть оценено по коэффициенту детерминации =0,781, следовательно, размер прибыли кредитных организаций на 78,1 % зависит от величины внутрибанковских расходов.

При сравнении качества регрессии y = f (X3) с качеством регрессии
y = f (X2, X3) , имеющей =0,794, можно утверждать, что улучшение качества модели не произошло.

Значение F-критерия Фишера составляет 28,53 > Fтабл (1,8)=5,32 , следовательно, построенное уравнение регрессии признается статистически значимым и может быть использовано для анализа и прогнозирования процессов.

Построение точечного прогноза прибыли кредитного учреждения (результативного показателя) может быть осуществлено по уравнению множественной регрессии, построенной в пункте 4 задачи, или по уравнению регрессии, содержащего только статистически значимые факторы (пункт 5 задачи).

Воспользуемся уравнением множественной регрессии, так как качество этой модели признано лучшим:

Для построения точечного прогноза результативного признака необходимо рассчитать точечные прогнозы факторных признаков (величины доходов организации по депозитам и величины внутрибанковских расходов). Для этого построим графики X2(t), X3(t) и тренд по каждому из факторов (рисунок 8, 9).

Рис. 8. Выбор типа диаграммы

Рис.9. Выбор источника данных

На полученной диаграмме необходимо добавить линию тренда:

Диаграмма->Добавить линию тренда.

В настройках тренда в закладке Параметры указать (рисунок 10):

Прогноз вперед на 1 единицу

Показать уравнение на диаграмме

Поместить на диаграмму величину достоверности аппроксимации.

Рис.10. Параметры линии тренда

Результат построения представлен на рисунке 11.

Рис.11. Построение прогноза величины доходов по депозитам (X2)

В полученное уравнение тренда

Х2 = 1,8061*х + 49,467 ,

в котором в качестве факторного признака выступает «время», необходимо подставить следующий момент времени. Так как временной ряд факторного признака Х2 представлен 10 наблюдениями, то следующий момент времени будет представлен числом 11.

Читайте также:  Камера мвк 16 схема подключения

X2Прогн.=1,8061*11+49,467 = 69,3341 (млн.руб.)

Осуществляя аналогичные установки для фактора Х3, построим прогноз по величине внутрибанковских расходов (рисунок 12) .

Рис.12. Построение прогноза величины внутрибанковских расходов (X3)

Определим прогнозное значение внутрибанковских расходов из построенного уравнения тренда:

X3Прогн.=4,9455 *11+61,2=115,6005 (млн.руб.)

Рассчитанные значения прогнозов по факторам Х2 и Х3 подставим в уравнение множественной регрессии:

Y=0,197247*X2 + 0,592429*X3 — 16,2872

YПрогн. = 0,197247*X2 Прогн. + 0,592429*X3 прогн. — 16,2872

Определим интервальный прогноз результирующего показателя, для этого рассчитаем ширину доверительного интервала по формуле:

(4)

где = 5,968678 (стандартная ошибка из таблицы регрессионной статистики, рисунок 17),

Y Прогн. – рассчитанное выше значение точечного прогноза результативного признака,

Кр= tтаб= 2,364624 табличный коэффициент Стьюдента, можно определить с помощью функции СТЬЮДРАСПОБР(0,05;7)

— среднее значение результативного признака (прибыли кредитной организации).

Подставляя эти значения в выше записанную формулу, получим:

U(k)= 5,968678*2,364624*√(1+0,1+326,6634/1211,6)= 16,51731

Таким образом, прогнозное значение прибыли кредитных организаций
Yпрогн= 65,873832 , будет находиться между верхней границей, равной
65,873832 + 16,51731 = 82,39113827 (млн.руб.)

и нижней границей, равной

65,873832 – 16,51731= 49,3565254 (млн.руб.)

Вывод: Прогнозное значение прибыли исследуемых кредитных организаций, рассчитанное по уравнению множественной регрессии, будет находиться в интервале от 49,36 мл.руб. до 82,39 млн.руб.

Данное уравнение регрессии признано статистически значимым по критерию Фишера и обладает достаточно высоким качеством, следовательно, результаты расчетов можно признать надежными и достоверными.

Спрос и предложение – главные компоненты рынка, взаимосвязанные и взаимодействующие друг с другом. Эти категории помогают понять механизм формирования рыночной цены и потребления товаров, выстроить модель поведения покупателя и продавца.

Отслеживать спрос и предложение своего товара предприятие может средствами Microsoft Excel.

Как построить график спроса и предложения в Excel

Спрос – это желание обладать товаром или услугой, подкрепленное возможностью. То есть «хочу и могу». Не просто потребность, а платежеспособность в отношении определенного продукта в существующих рыночных условиях.

Величина спроса – число товаров и услуг, которое человек готов купить в данный момент, в данном месте, за данную цену.

На величину объема сбыта влияют прямо и косвенно множество факторов:

  1. активность рекламной кампании;
  2. мода;
  3. вкус покупателя, ожидания;
  4. размер дохода потребителя;
  5. полезность товара;
  6. доступность;
  7. стоимость схожих категорий товаров и т.д.

Зависимость между величиной спроса и факторами – это функция спроса. В экономической практике принято рассматривать функцию спроса от цены. В данном случае все определяющие величину спроса факторы считаются неизменными.

Графическая иллюстрация функции спроса от цены – кривая спроса. Основное свойство данного экономического параметра: уменьшение цены ведет к возрастанию сбыта продукта. И, напротив, высокая стоимость продукта ограничивает спрос на него.

Обратная зависимость имеет фундаментальный характер. Потому ее считают законом спроса. Изобразим его наглядно с помощью графика.

  1. Внесем данные по ценам на товар и по количеству проданных единиц в шкалу спроса:
  2. Переходим на вкладку «Вставка», инструмент «Диаграммы» — выбираем тип графика.
  3. Для настройки делаем график активным, чтобы появилось дополнительная группа закладок под названием «Работа с диаграмами». Выбераем закладку «Конструктор», а в ней инструмент «Выбрать данные».
  4. В окне «Выбор источника данных» из левой колонки «Элементы легенды (ряды)» удаляем данные «Продано».
  5. В этом же окне в правой колонке «Подписи горизонтальной оси (категории)» жмем «Изменить».
  6. Выделяем диапазон ячеек B2:B6 чтобы автоматически заполнить параметрами поле в появившимся окне «Подписи оси».

Обратите внимание! Количество продукции – ось абсцисс (горизонтальная). Цена – ось ординат (вертикальная).

Полноценный анализ ситуации на рынке невозможен без рассмотрения предложения. Это совокупность продуктов и услуг, которые присутствуют на рынке и предлагаются продавцом покупателю за определенную цену.

У данной экономической категории есть величина (число товаров и услуг, предлагаемых в конкретный временной промежуток, в конкретном месте, по определенной цене).

Цена предложения – прогнозируемый показатель. Это минимальная сумма, за которую продавец согласен предложить потребителю свой товар.

Объем предложения зависит, соответственно, от цены. Только в данном случае наблюдается обратная зависимость (ср.: объем): чем ниже цена, тем меньше предлагаемой продукции. Продавец лучше придержит часть товара на складе, чем отдаст за бесценок. Хотя на объем предложения влияет не только стоимость.

Функция предложения от цены показывает зависимость величины предложения от его денежной оценки.

Добавим в демонстрационную табличку еще один столбец. Условно назовем его «Предложено»:

Теперь отобразим на графике сразу 2 показателя: «Спрос» и «Предложение». В одной области. Для этой цели подойдет точечная диаграмма.

Выделяем таблицу с исходными данными и выберем инструмент: «Вставка»-«Точечная»-«Точечная с гладкими кривыми и маркерами».

Снова выбираем «Конструктор»-«Выбрать данные» и задаем параметры в окне «Изменение ряда» для графиков:
спрос: предложение:

Следим, чтобы горизонталь показывала количество, а вертикаль – цену. Получаем результат:

Интерпретируем. Пересечение графиков иллюстрирует становление равновесной цены (50 рублей) и равновесного количества продаж (300 единиц). Область выше равновесной цены – избыток продукции. Производитель вынужден постепенно уменьшать стоимость. Область ниже равновесной цены – дефицит. Цены будут повышаться.

Как найти эластичность спроса в Excel

Эластичность спроса – это степень чувствительности показателя к изменению факторов. Данный критерий расчетный, представлен в виде коэффициентов.

Прямая эластичность по привлекательной цене для потребителя определяется как процентное изменение объема к процентному изменению цены. Измерим коэффициент методом центральной точки (чаще всего используемым).

Для примера возьмем следующие данные:

Введем формулу коэффициента эластичности спроса по цене: =((E3-D3)/(E3+D3))/((C3-B3)/(C3+B3)).

Знак «минус» указывает на отрицательный наклон кривой спроса. Коэффициент эластичности характеризует относительное изменение объема продаж при бесконечно малом изменении стоимости. Так как показатель меньше 0, то график сдвинется влево. Экономический смысл: повышение цены в текущий момент времени повлечет уменьшение будущей стоимости.

Как найти эластичность предложения в Excel

Эластичность предложения – это расчетный показатель чувствительности объема к изменению рыночной цены.

При расчете коэффициента используется та же формула: изменение объема предложения / изменение стоимости.

Анализ результата. Относительно неэластичное предложение. Предлагаемый объем продукции остается неизменным для перепродажи по любой стоимости.

Ссылка на основную публикацию
Как почистить джойстик ps3
Привет привет :D если кому нужно"Если у Вас PS3 40Gb версия: 1. Выключаем тумблером (сзади переключатель питания) PS3.2. Зажимаем пальцем...
Как повесить моноблок на стену
К любому моноблоку iMac можно прикрутить специальный адаптер, с помощью которого компьютер можно будет закрепить на стене или держателе. Продается...
Как подключить внешнюю видеокарту к моноблоку
Есть универсальный способ и для MacBook, и для Windows-устройств. Видеокарта – наиболее узкое место ноутбуков. Даже если разместить в нем...
Как присвоить артикул товару в 1с
Артикул — условное обозначение, которое присваивают тому или иному товару, чтобы отличить его от других в ассортименте и сделать удобным...
Adblock detector