Интеграл синус в квадрате икс

Интеграл синус в квадрате икс

Интеграл от синуса по таблице интегрирования равен: $$ int sin x dx = — cos x + C $$

Словами это читается так: интеграл от синуса равен сумме отрицательного косинуса и произвольной постоянной.

Пример 1
Найти интеграл от синус 2x: $$ int sin 2x dx $$
Решение

Напрямую интеграл взять не получится, так как аргумент синуса и знака дифференциала отличаются. Выполняем подведение под дифференциал $ 2x $ и добавляем перед интегралом дробь $ frac<1> <2>$:

$$ int sin 2x dx = frac<1> <2>int sin 2x d(2x) = -frac<1> <2>cos 2x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$ int sin 2x dx = -frac<1> <2>cos 2x + C $$

В данном случае необходимо воспользоваться одной из тригонометрических формул. Конкретно формулой понижения степени синуса: $$ sin^2 x = frac<1-cos 2x> <2>$$

Заменяем выражение под интегралом:

$$ int sin^2 x dx = int frac<1-cos 2x> <2>dx = frac<1> <2>int (1-cos 2x) dx = $$

$$ = frac<1> <2>int 1dx — frac<1> <2>int cos 2x dx = frac<1><2>x — frac<1><2>cdotfrac<1><2>int cos 2x d(2x) = $$

Пример 2
Найти интеграл от синуса в квадрате: $$ int sin^2 x dx $$
Решение
Ответ
$$ int sin^2 x dx = frac<1><2>x — frac<1><4>sin 2x + C $$

Здесь нужно вспомнить свойство степеней и учесть: $$ sin^3 x = sin x cdot sin^2 x $$

Подставляем, полученное выражение в интеграл и заносим $ sin x $ под знак дифференциала:

$$ int sin^3 x dx = int sin x sin^2 x dx = — int sin^2 x d(cos x) = $$

Далее используем свойство $ sin^2 x = 1 — cos^2 x $:

$$ = -int (1-cos^2 x) d(cos x) = -int d(cos x) + int cos^2 x d(cos x) = $$

$$ = — cos x + frac<cos^3 x> <3>+ C = frac<1> <3>cos^3 x — cos x + C $$

$$ int sin^3 x dx = frac<1> <3>cos^3 x — cos x + C $$

Пример 3
Найти интеграл от синуса в кубе: $$ int sin^3 x dx $$
Решение
Ответ

Вычисление начнем как в случае с неопределенным интегралом и в конце используем формулу Ньютона-Лейбница $ int_a^b f(x) dx = F(x) igg |_a^b = F(b)-F(a) $:

$$ int_0^pi sin x dx = -cos x igg |_0^pi = -cos pi + cos 0 = -(-1) + 1 = 1+1=2 $$

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Подынтегральное выражение можно преобразовать из произведения тригонометрических функций в сумму

Рассмотрим интегралы, в которых подынтегральная функция представляет собой произведение синусов и косинусов первой степени от икса, умноженного на разные множители, то есть интегралы вида

(1)

Воспользовавшись известными тригонометрическими формулами

(2)
(3)
(4)
можно преобразовать каждое из произведений в интегралах вида (31) в алгебраическую сумму и проинтегрировать по формулам

(5)

(6)

Решение. По формуле (2) при

Применяя далее формулу (5), получим

Решение. По формуле (3) при получаем следующее преобразование подынтегрального выражения:

Применяя далее формулу (6), получим

Решение. По формуле (4) при получаем следующее преобразование подынтегрального выражения:

Применяя формулу (6), получим

Интеграл произведения степеней синуса и косинуса одного и того же аргумента

Рассмотрим теперь интегралы от функций, представляющих собой произведение степеней синуса и косинуса одного и того же аргумента, т.е.

(7)

В частных случаях один из показателей (m или n) может равняться нулю.

При интегрировании таких функций используется то, что чётную степень косинуса можно выразить через синус, а дифференциал синуса равен cos x dx (или чётную степень синуса можно выразить через косинус, а дифференциал косинуса равен — sin x dx ) .

Следует различать два случая: 1) хотя бы один из показателей m и n нечётный; 2) оба показателя чётные.

Пусть имеет место первый случай, а именно показатель n = 2k + 1 — нечётный. Тогда, учитывая, что

Подынтегральное выражение представлено в таком виде, что одна его часть – функция только синуса, а другая – дифференциал синуса. Теперь с помощью замены переменной t = sin x решение сводится к интегрированию многочлена относительно t. Если же только степень m нечётна, то поступают аналогично, выделяя множитель sinx, выражая остальную часть подынтегральной функции через cos x и полагая t = cos x . Этот приём можно использовать и при интегрировании частного степеней синуса и косинуса, когда хотя бы один из показателей — нечётный. Всё дело в том, что частное степеней синуса и косинуса — это частный случай их произведения: когда тригонометрическая функция находится в знаменателе подынтегрального выражения, её степень — отрицательная. Но бывают и случаи частного тригонометрических функций, когда их степени — только чётные. О них — следующем абзаце.

Если же оба показателя m и n – чётные, то, используя тригонометрические формулы

понижают показатели степени синуса и косинуса, после чего получится интеграл того же типа, что и выше. Поэтому интегрирование следует продолжать по той же схеме. Если же один из чётных показателей — отрицательный, то есть рассматривается частное чётных степеней синуса и косинуса, то данная схема не годится. Тогда используется замена переменной в зависимости от того, как можно преобразовать подынтегральное выражение. Такой случай будет рассмотрен в следующем параграфе.

Пример 4. Найти интеграл от тригонометрической функции

Решение. Показатель степени косинуса – нечётный. Поэтому представим

и произведём замену переменной t = sin x (тогда dt = cos x dx ). Тогда получим

Возвращаясь к старой переменной, окончательно найдём

Пример 5. Найти интеграл от тригонометрической функции

.

Решение. Показатель степени косинуса, как и в предыдущем примере – нечётный, но больше. Представим

и произведём замену переменной t = sin x (тогда dt = cos x dx ). Тогда получим

и получим

Возвращаясь к старой переменной, получаем решение

Пример 6. Найти интеграл от тригонометрической функции

Решение. Показатели степени синуса и косинуса – чётные. Поэтому преобразуем подынтегральную функцию так:

Во втором интеграле произведём замену переменной, полагая t = sin2x . Тогда (1/2)dt = cos2x dx . Следовательно,

Найти интеграл от тригонометрической функции самостоятельно, а затем посмотреть решение

Пример 7. Найти интеграл от тригонометрической функции

.

Использование метода замены переменой

Метод замены переменной при интегировании тригонометрических функций можно применять в случаях, когда в подынтегральном выражении присутствует только синус или только косинус, произведение синуса и косинуса, в котором или синус или косинус — в первой степени, тангенс или котангенс, а также частное чётных степеней синуса и косинуса одного и того же аргумента. При этом можно производить перестановки не только sinx = t и sinx = t , но и tgx = t и ctgx = t .

Пример 8. Найти интеграл от тригонометрической функции

.

Решение. Произведём замену переменной: , тогда . Получившееся подынтегральное выражение легко интегрируется по таблице интегралов:

.

Возвращаясь к первоначальной переменной, окончательно получаем:

Пример 9. Найти интеграл от тригонометрической функции

.

Решение. Преобразуем тангенс в отношение синуса и косинуса:

.

Произведём замену переменной: , тогда . Получившееся подынтегральное выражение представляет собой табличный интеграл со знаком минус:

.

Возвращаясь к первоначальной переменной, окончательно получаем:

.

Пример 10. Найти интеграл от тригонометрической функции

.

Решение. Произведём замену переменной: , тогда .

Преобразуем подынтегральное выражение, чтобы применить тригонометрическое тождество :

Производим замену переменной, не забывая перед интегралом поставить знак минус (смотрите выше, чему равно dt ). Далее раскладываем подынтегральное выражение на множители и интегрируем по таблице:

.

Возвращаясь к первоначальной переменной, окончательно получаем:

.

Найти интеграл от тригонометрической функции самостоятельно, а затем посмотреть решение

Пример 11. Найти интеграл от тригонометрической функции

.

Универсальная тригонометрическая подстановка

Универсальную тригонометрическую подстановку можно применять в случаях, когда подынтегральное выражение не подпадает под случаи, разобранные в предыдущих параграфах. В основном, когда синус или косинус (или и то, и другое) находятся в знаменателе дроби. Доказано, что синус и косинус можно заменить другим выражением, содержащим тангенс половины исходного угла следующим образом:

где .

Тогда .

Но заметим, что универсальная тригонометрическая подстановка часто влечёт за собой довольно сложные алгебраические преобразования, поэтому её лучше применять, когда никакой другой метод не работает. Разберём примеры, когда вместе с универсальной тригонометрической подстановкой используются подведение под знак дифференциала и метод неопределённых коэффициентов.

Пример 12. Найти интеграл от тригонометрической функции

.

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда
.

Дроби в числителе и знаменателе умножаем на , а двойку выносим и ставим перед знаком интеграла. Тогда

Чтобы в результате преобразований прийти к табличному интегралу, попытаемся получить в знаменателе полный квадрат. Для этого умножим числитель и знаменатель подынтегрального выражения на 2. Применяем интегрирование подведением под знак дифференциала. Получим

К полученному результату преобразований можем теперь применить табличный интеграл 21. В результате получаем окончательное решение:

.

Пример 13. Найти интеграл от тригонометрической функции

.

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда
.

Дроби в числителе и знаменателе умножаем на , а двойку выносим и ставим перед знаком интеграла. Тогда

.

Чтобы в результате преобразований прийти к табличному интегралу, попытаемся получить в знаменателе полный квадрат. Для этого умножим числитель и знаменатель подынтегрального выражения на 3. Применяем интегрирование подведением под знак дифференциала. Получим

К полученному результату преобразований можем теперь применить табличный интеграл 21. В результате получаем окончательное решение:

.

Пример 14. Найти интеграл от тригонометрической функции

.

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда

Используем метод неопределённых коэффициентов. Получим следующее подынтегральное выражение:

Чтобы найти коэффициенты, решим систему уравнений:

Используем подведение под знак дифференциала:

К последнему слагаемому применяем замену переменной , тогда . Получаем:

Преобразуем и вернём на место первоначальную переменную и окончательно получим решение:

При нахождении интеграла $int sin^m xdx$ используют разные методы интегрирования. В нашем случае степень чётная. Поэтому мы применим метод с использованием следующей формулы: $sin^2 x =frac<1-cos 2x><2>.$

Решим пример, когда использование формулы не требуется:

$intsin^2 xcos xdx$.

Подставим $sin x = t$.

Интеграл от синус икс в квадрате решается одним из методов интегрирования тригонометрических функций, который мы описали. В разных примерах могут понадобиться преобразующие формулы из курса тригонометрии и различные виды подстановки. Навык правильно и быстро интегрировать приходит в процессе самостоятельного решения примеров.

Попробуй обратиться за помощью к преподавателям

Пример 4
Вычислить определенный интеграл от синуса: $$ int_0^pi sin x dx $$
Решение
Ссылка на основную публикацию
Имя логического диска обозначается
На одном компьютере может быть несколько дисководов - устройств работы с дисками. Каждому дисководу присваивается однобуквенное имя (после которого ставится...
Закладки на мобильном телефоне
Яндекс браузер для андроид — простой в использовании и предлагает множество полезных опций для требовательных пользователей в частности функцию закладки,...
Задержка таможенной очистки импорт fedex что значит
Мемфис, штат Теннесси. Сигнальные грозовые огни мигают, показывая что сегодня сортировка начнется поздно… Осторожно, много фото! Синие сигнальные огни включаются...
Инициализация диска устройство не готово
После того, как вы установили жесткий диск в компьютер, и он определился в BIOS (базовой системе), необходимо провести инициализацию, чтобы...
Adblock detector