Функция распределения пуассоновского распределения

Функция распределения пуассоновского распределения

На этой странице мы собрали примеры решения учебных задач, где используется распределение Пуассона.

Краткая теория

Рассмотрим некоторый поток событий, в котором события наступают независимо друг от друга и с некоторой фиксированной средней интенсивностью $lambda$ (событий в единицу времени). Тогда случайная величина $X$, равная числу событий $k$, произошедших за фиксированное время, имеет распределение Пуассона. Вероятности вычисляются по следующей формуле:

Для пуассоновской случайной величины математическое ожидание и дисперсия совпадают с интенсивностью потока событий:

$$M(X)=lambda, quad D(X)=lambda.$$

Распределение Пуассона играет важную роль в теории массового обслуживания. При увеличении $lambda$ данное распределение стремится к нормальному распределению $N(lambda, sqrt<lambda>)$. В свою очередь, оно само является "приближенной" моделью биномиального распределения при больших $n$ и крайне малых $p$ (см. теорию про формулу Пуассона).

Примеры решенных задач

Задача 1. Среднее число самолетов, взлетающих с полевого аэродрома за одни сутки, равно 10. Найти вероятность того, что за 6 часов взлетят:
А) три самолета,
Б) не менее двух самолетов.

Задача 2. На автовокзале время прибытия автобусов различных рейсов объявляет дежурный. Появление информации о различных рейсах происходит случайной и независимо друг от друга. В среднем на автовокзал прибывает 5 рейсов каждые полчаса.
А) Составьте ряд распределения числа сообщений о прибытии автобусов в течение получаса.
Б) Найдите числовые характеристики этого распределения.
В) Запишите функцию распределения вероятностей и постройте ее график.
Г) Чему равна вероятность того, что в течение получаса прибудут не менее трех автобусов?
Д) Чему равна вероятность того, что в течение четверти часа не прибудет ни один автобус?

Задача 3. АТС получает в среднем за час 480 вызовов. Определить вероятность того, что за данную минуту она получит: ровно 3 вызова; от 2 до 5 вызовов.

Задача 4. Случайная величина $X$ распределена по закону Пуассона с параметром $lambda=0,8$. Необходимо:
А) выписать формулу для вычисления вероятности $P(X=m)$;
Б) найти вероятность $P(1 le X lt 3)$;
В) найти математическое ожидание $M(2X+5)$ и дисперсию $D(5-2X)$.

Задача 5. Среднее число ошибочных соединений, приходящееся на одного телефонного абонента в единицу времени, равно 8. Какова вероятность того, что для данного абонента число ошибочных соединений будет больше 4?

Задача 6. В среднем в магазин заходят 3 человека в минуту. Найти вероятность того, что за 2 минуты в магазин зайдет не более 1 человека.

Задача 7. Автомобиль проходит технический осмотр и обслуживание. Число неисправностей, обнаруженных во время техосмотра, распределяется по закону Пуассона с параметром 0,63. Если неисправностей не обнаружено, техническое обслуживание автомобиля продолжается в среднем 2 ч. Если обнаружены одна или две неисправности, то на устранение каждой из них тратится в среднем еще полчаса. Если обнаружено больше двух неисправностей, то автомобиль становится на профилактический ремонт, где он находится в среднем 4 ч.
Определите закон распределения среднего времени $T$ обслуживания и ремонта автомобиля и его математическое ожидание $M(T)$.

Читайте также:  Что делать если забыл пароль от архива

Задача 8. В тексте учебника по психологии содержатся опечатки: в среднем, одна на десять страниц. Пусть Х – число опечаток на одной странице. Определить закон распределения для Х. Найти вероятность, что на странице есть хотя бы одна опечатка.

Решебник по терверу

Если решения нужны срочно и почти даром? Ищите в решебнике по теории вероятностей:

Распределение Пуассона: формула вероятности редких событий

Распределение Пуассона — случай биномиального распределения, когда число испытаний n достаточно большое, а вероятность p события A мала ().

Распределение Пуассона называют также распределением редких событий. Например, рождение за год трёх или четырёх близнецов, тот же закон распределения имеет число распавшихся в единицу времени атомов радиоактивного вещества и др.

Вероятность наступления редких событий вычисляется по формуле Пуассона:

,

где m число наступления события A;

— среднее значение распределения Пуассона;

e=2,7183 — основание натурального логарифма.

Закон Пуассона зависит от одного параметра — λ (лямбда), смысл которого в следующем: он является одновременно математическим ожиданием и дисперсией случаной величины, распределённой по закону Пуассона.

Условия возникновения распределения Пуассона

Рассмотрим условия, при которых возникает распределение Пуассона.

Во-первых, распределение Пуассона является предельным для биномиального распределения, когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):

.

В математическом анализе доказано, что распределение Пуассона с параметром λ = np можно приближенно применять вместо биномиального, когда число опытов n очень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.

Во-вторых, распределение Пуассона имеет место, когда есть поток событий, называемым простейшим (или стационарным пуассоновским потоком). Потоком событий называют последовательность таких моментов, как поступление вызовов на коммуникационный узел, приходы посетителей в магазин, прибытие составов на сортировочную горку и тому подобных. Пуассоновский поток обладает следующими свойствами:

  • стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;
  • ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;
  • отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период.
Читайте также:  Как поставить нерастяжимый пробел

Характеристики случайной величины, распределённой по закону Пуассона

Характеристики случайной величины, распределённой по закону Пуассона:

математическое ожидание ;

стандартное отклонение ;

дисперсия .

Распределение Пуассона и расчёты в MS Excel

Вероятность распределения Пуассона P(m) и значения интегральной функции F(m) можно вычислить при помощи функции MS Excel ПУАССОН.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).

MS Excel требует ввести следующие данные:

  • x — число событий m;
  • среднее;
  • интегральная — логическое значение: 0 — если нужно вычислить вероятность P(m) и 1 — если вероятность F(m).

Решение примеров с распределением Пуассона

Пример 1. Менеджер телекоммуникационной компании решил рассчитать вероятность того, что в некотором небольшом городе в течении пяти минут поступят 0, 1, 2, . вызовов. Выбраны случайные интервалы в пять минут, подсчитано число вызовов в каждый их интервалов и рассчитано среднее число вызовов: .

Вычислить вероятность того, что в течении пяти минут поступят 6 вызовов.

Решение. По формуле Пуассона получаем:

Тот же результат получим, используя функцию MS Excel ПУАССОН.РАСП (значение интегральной величины — 0):

Вычислим вероятность того, что в течение пяти минут поступят не более 6 вызовов (значение интегральной величины — 1):

Решить пример самостоятельно, а затем посмотреть решение

Пример 2. Производитель отправил в некоторый город 1000 проверенных, то есть исправных телевизоров. Вероятность того, что при транспортировке телевизор выйдет из строя, равна 0,003. То есть в этом случае действует закон распределения Пуассона. Найти вероятность того, что из всех доставленных телевизоров неисправными будут: 1) два телевизора; 2) менее двух телевизоров.

Продолжаем решать примеры вместе

Пример 3. В центр звонков клиентов поступает поток звонков с интенсивностью 0,8 звонков в минуту. Найти вероятность того, что за 2 минуты: а) не придёт ни одного звонка; б) придёт ровно один звонок; в) придёт хотя бы один звонок.

Решение. Случайная величина X — число звонков за 2 минуты с параметром — распределена по закону Пуассона. У нас есть всё, чтобы вычислить требуемые в условии задачи вероятности:

а) (так как 0! = 1 ).

б) .

в) .

Пример 4. Поток грузовых железнодорожных составов, прибывающих на сортировочную горку, имеет интенсивность 4 состава в час. Найти вероятности того, что за полчаса на горку прибудет: а) ровно один состав; б) хотя бы один состав; в) не менее трёх составов.

Читайте также:  Правила создания презентации в powerpoint

Решение. Случайная величина X — число составов за 0,5 часа с параметром — распределена по закону Пуассона. Вычисляем требуемые в условии задачи вероятности:

а) .

б) .

в) .

Теория вероятностей – это математическая наука, изучающая закономерности в случайных явлениях. На сегодняшний день это полноценная наука, имеющая большое практическое значение.

История теории вероятности восходит к XVII веку, когда были предприняты первые попытки систематического исследования задач, относящихся к массовым случайным явлениям, и появился соответствующий математический аппарат. С тех пор, многие основы были разработаны и углублены до нынешних понятий, были открыты другие важные законы и закономерности. Множество ученых работало и работает над проблемами теории вероятностей.

Среди них нельзя не обратить внимание на труды Симеона Дени Пуассона ((1781–1840) – французский математик), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Число наступлений определённого случайного события за единицу времени, когда факт наступления этого события в данном эксперименте не зависят от того, сколько раз и в какие моменты времени оно осуществлялось в прошлом, и не влияет на будущее. А испытания производятся в стационарных условиях, то для описания распределения такой случайной величины обычно используют закон Пуассона (данное распределение впервые предложено и опубликовано этим учёным в 1837 г.).

Этот закон можно также описывать как предельный случай биноминального распределения, когда вероятность p осуществления интересующего нас события в единичном эксперименте очень мала, но число экспериментов m, производимых в единицу времени, достаточно велико, а именно такое, что в процессе p

Поэтому закон Пуассона часто называют также законом редких событий.

Распределение Пуассона в теории вероятностей

Функция и ряд распределения

Распределение Пуассона – это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)).

Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:

где a = n · p – параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения

может быть написан, если положить p = a/n, в виде

Так как p очень мало, то следует принимать во внимание только числа m, малые по сравнению с n. Произведение

весьма близко к единице. Это же относится к величине

очень близка к ea . Отсюда получаем формулу:

Ссылка на основную публикацию
Функция overdrive в мониторе
Технология компенсации времени отклика LCD-матрицы, известная как Overdrive (у каждого производителя она имеет свое фирменное название) обеспечивает существенное ускорение переключения...
Формула рандома в паскале
Здравствуйте, уважаемые читатели нашего сайта. Сегодня мы рассмотрим две полезные процедуры в паскале - Random и Randomize.И опять я начну...
Формула расчета мощности конденсатора
Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию. Eмкостная нагрузка в цепи переменного тока за...
Функция еош в excel
Всем добрый день! Эта статья посвящается вопросу, как можно избавится от ошибки в результате вычисления, так как это делает функция...
Adblock detector