Формула теории вероятности выпадения чисел

Формула теории вероятности выпадения чисел

Меня зовут Иван Мельников! Я – выпускник вуза НТУ «ХПИ», инженерно-физический факультет, специальность «Прикладная математика», счастливый семьянин и просто поклонник игр на удачу. С детства я увлекался лотереями. Мне всегда было интересно, по каким законам выпадают те или иные шары. С 10 лет я записываю результаты лотерей и после анализирую данные.

В моей книге «Секреты Везения или Пошаговый Алгоритм Выигрыша в Лотерее» я хочу поделиться с вами наблюдениями, накопленными годами, а также выводами, которые я смог сделать с помощью своего образования. Играйте по моей системе и уже совсем скоро вы превратите азартную игру в стабильный доход!

Математические шансы на победу

  • Простой расчет с факториалами

Самыми распространенными в мире лотереями являются игры на везение типа «5 из 36» и «6 из 45». Рассчитаем шанс выигрыша в лотерее банально по теории вероятности.

Пример расчета возможности получения джекпота в лотерею «5 из 36»:

Необходимо число свободных ячеек поделить на количество возможных комбинаций. То есть первую цифру можно выбрать из 36, вторую – из 35, третью – из 34 и так далее.

Следовательно, вот формула:

Количество возможных комбинаций в лотерее типа «5 из 36» = (36*35*34*33*32) / (1*2*3*4*5) = 376 992

Шанс выигрыша составляет 1 к почти 400 000.

Давайте проделаем то же самое для лотереи типа «6 к 45».

Количество возможных комбинаций = «6 из 45» = (45*44*43*42*41*40) / (1*2*3*4*5*6) = 9 774 072.

Соответственно, шанс выигрыша составляет практически 1 к 10 млн.

  • Немного о теории вероятности

Согласно давно уже известной теории у каждого шара в каждом следующем розыске есть абсолютно равный шанс выпасть по сравнению с другими.

Но не все так просто, даже согласно теории вероятности. Рассмотрим подробнее на примере подбрасывания монетки. Первый раз у нас выпал орел, тогда в следующий раз вероятность выпадения решки гораздо выше. Если орел выпал еще раз, то в следующий раз ожидаем решку с еще большей вероятностью.

С шарами, выходящими из лототронов, приблизительно та же история, но несколько сложнее и с более существенным количеством переменных. Если один шар выпал 3 раза, а другой – 10, то вероятность выпадения первого шара будет выше, чем у второго. Стоит отметить, что данный закон старательно нарушают организаторы некоторых лотерей, которые меняют лототроны время от времени. В каждом новом лототроне появляется новая последовательность.

Еще некоторые организаторы используют отдельный лототрон для каждого шара. Таким образом, необходимо рассчитывать вероятность выпадения каждого шара в каждом отдельном лототроне. Это с одной стороны немного облегчает задачу, с другой – усложняет.

Но это всего лишь теория вероятности, которая, как выяснилось, не очень-то и работает. Давайте посмотрим, какие есть секреты, основанные на сухой науке и статистических данных, накопленных за не одно десятилетие.

Почему не работает теория вероятности?

  • Неидеальные условия

Первое, о чем стоит поговорить, — это калибровка лототронов. Ни один из лототронов не откалиброван идеально.

Второй нюанс – диаметры лотерейных шаров также не являются одинаковыми. Даже отличие на малейшие доли миллиметров играют роль в частоте выпадения того или иного шара.

Третья деталь – разный вес шаров. Опять же отличие может казаться вовсе не существенным, но оно также влияет на статистику, притом, значительно.

  • Сумма выигрышных номеров

Если рассматривать статистику номеров, выигравших в лотерею типа «6 из 45», то можно заметить интересный факт: сумма цифр, на которые ставили игроки, колеблется между 126 и 167.

С суммой выигрышных лотерейных цифр для «5 из 36» немного другая история. Здесь выигрышные цифры составляют сумму в 83-106.

  • Четные или нечетные?

Как думаете, какие цифры чаще есть в выигрышных билетах? Четные? Нечетные? Скажу вам с полной уверенностью, что в лотереях «6 из 45» этих цифр поровну.

А вот как быть с «5 из 36»? Ведь нужно выбрать всего 5 шариков, четных и нечетных не может быть равное количество. Так вот. Проанализировав результаты розыгрышей лотерей данного типа четырех последних десятилетий, могу заявить, что незначительно, но все-таки чаще, в выигрышных комбинациях появляются нечетные цифры. Особенно, те, которые содержат в себе цифру 6 или 9. Например, 19, 29, 39, 69 и так далее.

  • Популярные группы чисел

Для лотереи типа «6 к 45» числа условно делим на 2 группы – от 1 до 22 и от 23 до 45. Следует отметить, что в выигрышных билетах отношение чисел, принадлежащих к группе, 2 к 4. То есть либо в билете будет 2 числа из группы от 1 до 22 и 4 числа из группы от 23 до 45 либо наоборот (4 числа из первой группы и 2 из второй).

Я пришел к аналогичному выводу, анализируя статистику лотерей типа «5 из 36». Только в данном случае немного иначе дробятся группы. Давайте первой обозначим группы, в которую входят цифры от 1 до 17, а второй – ту, куда помещаются оставшиеся числа от 18 до 35. Отношение цифр из первой группы ко второй в выигрышных комбинациях в 48% случаем равно 3 к 2, а в 52% случаев – наоборот, 2 к 3.

  • Стоит ли ставить на цифры из прошедших розыгрышей?

Доказано, что в 86% случаев в новом розыгрыше повторяется число, которое уже было в предыдущих розыгрышах. Поэтому просто необходимо следить за розыгрышами интересующей вас лотереи.

  • Последовательные цифры. Выбирать или не выбирать?

Шанс на то, что выпадут сразу 3 последовательные цифры, очень низок, и составляет менее 0,09%. А если вы хотите поставить сразу на 5 или 6 последовательных чисел, шанса практически нет. Поэтому выбирайте разные цифры.

  • Числа с единым шагом: победа или проигрыш?

Не стоит ставить на числа, которые идут в единой последовательности. Например, однозначно не нужно выбирать шаг 2 и с этим шагом делать ставку. 10, 13, 16, 19, 22 – однозначно проигрышная комбинация.

  • Больше одного билета: да или нет?

Лучше играть раз в 10 недель по 10 билетам, чем раз в неделю по одному. А также играйте группами. Можно выиграть большой денежный приз и разделить его между несколькими людьми.

Статистика всемирных лотерей

  • Megamillions

Одна из самых популярных в мире лотерей проводилась по следующему принципу: необходимо выбрать 5 чисел из 56, а также 1 из 46 для так называемого золотого шара.

За 5 угаданных шаров и 1 верно названный золотой счастливчик получает джекпот.

Посвящается РЕАЛЬНОМУ ЗАКРЫТИЮ
игорных заведений с 1-го июля 2009 года вне игровых зон

в связи с вступлением вчера, 30.06.2009, в силу Пункта 1 статьи 17, пункта 1 статьи 18 и статьи 19
ФЕДЕРАЛЬНОГО ЗАКОНА от 29.12.2006 N 244-ФЗ «О ГОСУДАРСТВЕННОМ РЕГУЛИРОВАНИИ ДЕЯТЕЛЬНОСТИ ПО ОРГАНИЗАЦИИ И ПРОВЕДЕНИЮ АЗАРТНЫХ ИГР И О ВНЕСЕНИИ ИЗМЕНЕНИЙ В НЕКОТОРЫЕ ЗАКОНОДАТЕЛЬНЫЕ АКТЫ РОССИЙСКОЙ ФЕДЕРАЦИИ» (принятого ГД ФС РФ 20.12.2006), http://nalog.consultant.ru/doc64924.html

ПАРАДОКС ЛОТЕРЕИ И ЗАКОНА БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ

Возможность – благоприятный случай получить разочарование

(«Афоризмы, цитаты, и крылатые слова»,
http://aphorism-list.com/t.php?page=vozmojnost)

Твои шансы выиграть в лотерею возрастут,
если ты купишь билет

Уинстон Грум (из «Правил Форреста Гампа»)
(«Афоризмы об играх»,
http://letter.com.ua/aphorism/game1.php)

Вполне ожидаемо (и философски проверяемо [англ.]), что данный конкретный билет не выиграет, но нельзя ожидать, что никакой билет не выиграет» («Академика», Список парадоксов, http://dic.academic.ru/dic.nsf/ruwiki/165304).

«Парадокс лотереи (типа спортлото)

Большинство участников лотерей (в которых выигрыш распределяется между всеми победителями, как в спортлото) обычно не ставят на "слишком симметричные" комбинации, хотя все комбинации равновозможны. Причина этого проста. Игроки по опыту знают, что, как правило, выигрывают не симметричные комбинации. В действительности выгоднее ставить на наиболее симметричные комбинации именно потому, что…. Почему?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

Все в жизни играли в какие-либо игры, необязательно в азартные, которые, так или иначе, связаны с вероятностью. А если кто-то и не играл, то наверняка подбрасывал пару раз в жизни монетку. Просто так, для развлечения или решая какой-либо вопрос, на который самому делать выбор оказывалось непосильным или невозможным. И я проделывал в детстве то же самое. Но уже тогда в голове закрадывалось какое-то сомнение в правильности обоснования своего выбора решений даже пустяковых вопросов подбрасыванием монетки. Видимо, уже тогда не хотелось передоверять собственное право выбора слепому случаю. Но не столько из-за того, что я и сам могу выбрать лучший вариант именно сейчас и именно для себя, а больше из-за того, что такой выбор не будет справедливым. Справедливым настолько, что я без всяких дальнейших раздумий и внутренних колебаний смог бы его принять и действовать сообразно этому выбору. А затем я и вовсе прекратил дальнейшие попытки принятия решений таким нехитрым способом, когда мои опасения подтвердились во время просмотра одного из популярных индийских фильмов, проходивших у нас в 80-х годах. Если не ошибаюсь, это был фильм «Месть и закон». В нём один из главных героев, делая выбор чего-либо, с серьёзным видом подбрасывал монетку. И всё было бы ничего, да только когда его подстрелили всё-таки, и он подарил свою «счастливую монетку», то оказалось, что она была с двумя одинаковыми сторонами. Видимо, этот герой хорошо усвоил первое правило успеха: если хочешь выиграть в казино, стань его владельцем.

Читайте также:  Как записывается ip адрес компьютера

На вопрос задачи, приведённой Секеем в своей книге, о том, почему ВЫГОДНЕЕ выбирать именно симметричные варианты геометрического расположения номеров на поле карточки, ответ не так уж и сложен. Вывод следует, исходя из трёх условий:

1) все варианты: и симметричные, и несимметричные – равновероятны;

2) большинство игроков выбирают несимметричные варианты;

3) получаемая сумма выигрыша зависит от количества: а) участников, б) выигравших (по категориям выигрыша, конечно);

следовательно, с точки зрения выгоды, то есть увеличения возможной прибыли при угадывании, симметричные варианты угадает намного меньшее количество игроков при том же самом количестве участвующих в лотерее, и сумма выигрыша будет делиться между намного меньшим количеством победителей.

Но с другой стороны, если бы всё так было просто, то и не возникало бы никаких сложностей с определением вероятности тех или иных событий. А парадоксов и разнообразных парадоксальных задач по теории вероятности существует не меньше, а то и гораздо больше, чем в других отраслях науки (в тех же математике, логике, физике). Например, такая задача.

«Парадокс игры в кости

Правильная игральная кость при бросании с равными шансами падает на любую из граней 1,2,3,4,5 или 6. (Сумма очков на противоположных гранях равна 7, т.е. падение на 1 означает выпадение 6 и т.д.).

В случае бросания 2-х костей сума выпавших чисел заключена между 2 и 12. Как 9, так и 10 можно получить двумя разными способами: 9 = 3 + 6 = 4 + 5 и 10= 4 + 6 = 5 + 5. В задаче с тремя костями и 9 и 10 получаются шестью способами. Почему тогда 9 появляется чаще, когда бросают две кости, а 10, когда бросают три?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html)».

В этой задаче нет никакого парадокса. Парадоксальность, а точнее уловка, скрыта в неполной информации: количество вариантов возможных комбинаций больше указанного. Потому что указаны лишь типы вариантов, способы составления, которые нужно распределить на количество костей.

Ответ прост: 9 появляется чаще, когда бросают две кости, а 10, когда бросают три, потому что вероятность выпадения суммы, равной 9, при двух костях больше, чем вероятность выпадения суммы, равной 10, при трёх костях, что отражает соотношение количества вариантов составления этих сумм.

Количество вариантов составления сумм:

А. 9 на двух кубиках: 3+6 (2 возможных варианта, то есть на первом 3 на втором 6 и наоборот) и 4+5 (2 вар.). Итого: 4 варианта

10 на двух кубиках: 4+6 (2 вар.) и 5+5 (1 вар.). Итого: 3 варианта

Соотношение вероятности в пользу суммы 9.

Б. 9 на трёх кубиках: 1+2+6 (6 вар.), 1+3+5 (6 вар.), 1+4+4 (3 вар.), 2+2+5 (3 вар.), 2+3+4 (6 вар.), 3+3+3 (1 вар.). Итого: 25 вариантов

10 на трёх кубиках: 1+3+6 (6 вар.), 1+4+5 (6 вар.), 2+2+6 (3 вар.), 2+3+5 (6 вар.), 2+4+4 (3 вар.), 3+3+4 (3 вар.), 4+4+2 (3 вар.) Итого: 30 вариантов

Соотношение вероятности в пользу суммы 10.

Почему же вероятность событий порождает столько противоречий?

Возможно, я ошибаюсь, но, по моему мнению, даже математики, не говоря уж о тех, кто вовсе не знаком с теорией вероятности, находятся в плену одной ложной исходной посылки о распределении вероятности. Это представление о том, что события происходят только в зависимости от их вероятности, без учёта распределения вероятности во времени. Жизнь не всегда идёт по рассчитанным схемам и именно так, как её описывают математически. Отражение этой двуликости: математического расчёта и в то же самое время не совпадение с ним – приводится в следующем парадоксе.

ПАРАДОКС ЗАКОНА БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ

«Отношение выпадений герба или решки к общему числу попыток при большом числе бросаний стремится к 1/2. Некоторые игроки уверены, что при серии выпадений орлов увеличивается вероятность выпадения решки. И в то же время у монет нет памяти, они не знают предыдущие броски и каждый раз вероятность выпадения орла или решки равна 1/2. Даже если перед этим выпадали 1000 гербов подряд. Не противоречит ли это закону Бернулли?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

Закон больших чисел Бернулли

«Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причём вероятность наступления этого события одна и та же при каждом испытании и равна р. Если событие А фактически произошло m раз в n испытаниях, то отношение m/n называют, как мы знаем, частотой появления события А. Частота есть случайная величина, причем вероятность того, что частота принимает значение m/n, выражается по формуле Бернулли …

Закон больших чисел в форме Бернулли состоит в следующем: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом числе опытов частота появления события А как угодно мало отличается от его вероятности, т. е…

…иными словами, при неограниченном увеличении числа n опытов частота m/n события А сходится по вероятности к Р(А)» (Теория вероятности, §5. 3. Закон больших чисел Бернулли. , http://www.toehelp.ru/theory/ter_ver/5_3)

Таким образом, из противоречий, заключённых в этих парадоксах, можно сформулировать общую проблему.

1. Парадокса лотереи – вероятность выигрыша конкретного билета ничтожна, но вероятность выигрыша какого-либо билета равна 1, то есть 100 процентам;

2. Парадокса закона больших чисел Бернулли – вероятность выпадения любого варианта равнозначна, но в действительности она должна меняться при большем выпадении одних вариантов для приведения вероятности к балансу.

Проблема, на мой взгляд, содержится в непонимании неравномерного распределения вероятности на количество вариантов или, другими словами, в зависимости вероятности одного варианта события от другого во временном контексте.

Никто не будет спорить, что сумма вероятностей вариантов события равна единице. Но почему все считают, что распределение по вариантам равномерно? Такой подход полностью игнорирует изменчивость мира в течение времени. И те же выпадения сторон монетки должны тогда строго чередоваться по очереди: орёл, решка, орёл, решка. Тогда распределение вероятности, рассчитанное по формуле, будет полностью совпадать с действительным ЗА ЛЮБОЙ КОНКРЕТНЫЙ ПЕРИОД ВРЕМЕНИ. Потому что в пределах этого временного периода, количество выпадающих разных вариантов будет одинаковым. Но в действительности это не так. Внутри отдельных периодов вероятность каждого варианта события меняется от 0 до 1 (от нуля до ста процентов). Например, когда из десяти раз все десять раз выпадет орёл (или красное, если это рулетка в казино). Мне известен случай, когда в рулетку выпало 15 раз подряд чёрное. Это с точки расчета вероятности вообще невозможно, если брать за единицу, то есть сумму всех возможных вариантов, к примеру, 20 выпадений, в которые входят эти пятнадцать. И это, кстати, продолжая мысль, почему-то не привело к следующим пятнадцати выпадениям красного цвета. Такие выпадения подряд игроки называют сериями. Серии наблюдаются и в спорте, да вообще везде.

Читайте также:  Игры в которых выбор влияет на сюжет

Вы скажете, что закон Бернулли описывает периоды с большими, «неограниченными количествами опытов» и в этих пределах он верен? Тогда почему бы той же монетке не выпасть сначала 1000 раз одной стороной подряд, а затем тысячу раз другой? Ведь закон в этом случае не нарушается ни на каплю? В действительности этого не происходит. В действительности любые длинные ряды выпадений двух возможных вариантов событий (А и Б, что можно заменить, например, на «орёл» и «решка») будут близко соответствовать схеме выпадений:

А, Б, А, Б, ААА, Б, АА, ББ, АА, ББББББ, АА, БББ, А, ББББББ, ААА, Б, АА, ББ, А, Б, АААА, Б, АА, БББ, АААА, Б, А, Б, А… (по 30 А и Б, всего 60).

Как видно, в рамках каждого конкретного отрезка (периоды выпадений или периоды времени) наблюдаются неравномерности. И длительность «серий» выпадений одного варианта а) подряд и б) в рамках периода (например, 10 выпадений) может колебаться. Теоретически амплитуда таких колебаний ничем не ограничена, но практически не ограниченных по длительности серий не существует. То есть существует некий предел, до которого возрастает длительность «серий», её «длина». Этими двумя ограничениями и регулируется баланс вероятности вариантов события: во-первых, переменчивостью вариантов в рамках произвольного периода (времени), другими словами, переменой «длины» серий от 1 до нескольких повторов подряд, а во-вторых, ограничением длины и частоты серий в рамках произвольного периода (времени). Этим достигается разнообразие событий, вариативность.

Такое распределение вероятности и отмечают игроки, которые выбирают несимметричные варианты расположения номеров на лотерейной карточке. Они исходят не из равного распределения вероятности на количество номеров, то есть их равновозможного выпадения, а, как раз, из неравномерного распределения вероятности по номерам. Почему-то ещё до сих пор не выпадало тех же самых номеров не то, что два тиража подряд, но и в массе всех тиражей. Это я могу говорить с уверенностью на основе изучения лотереи «Спортлото 5 из 36», проводимой в течение десятков лет. Подряд два тиража выпадет максимум 1 номер предыдущего тиража (достаточно часто – около четверти тиражей), 2 (в единичных случаях), 3 (в более редких случаях). Согласно теории вероятности когда-нибудь и все пять номеров выпали бы одинаковыми два тиража подряд. Но на это ушли бы тысячи лет, даже если бы тиражи проводились каждый день, а не раз в неделю. Это следует, если исходить из того, что общее количество возможных вариантов в лотерее «Спортлото 5 из 36» (36 * 35 * 34 * 33 * 32 / 1 * 2 * 3 * 4 * 5) = 376. 992, а повтор пяти номеров предыдущего тиража произойдёт не раньше, чем выпадут все возможные варианты хотя бы раз, что произойдёт при проведении 1 тиража в день, с учётом високосных годов за: 376. 992 / (365 * 4 + 1) * 4 = 1032,1478

1032 года. Но даже и после полного перебора всех возможных вариантов подряд два одинаковых тиража могут не выпасть ещё несколько тысяч лет, а возможно, и никогда.

Поэтому я абсолютно согласен с игроками, выбирающими наиболее часто выпадающие, несимметричные варианты. Потому что дождаться выпадения варианта, например, из фильма «Спортлото — 82» с М. Пуговкиным и М. Кокшеновым – 1,2,3,4,5,6 просто не-ре-аль-но. С таким же успехом можно дожидаться дождя на Марсе.
Добавлю, что, зафиксировав распределение вероятности определённым способом, я увидел, что типы вариантов, подобные приведённому из фильма, составляют ничтожные доли процента от всех выпадающих других типов, классов вариантов, а по теории вероятности они равновозможны.

Парадокс лотереи возникает из-за того, что вероятность выигрыша каждого конкретного билета в отдельности, то есть любого, ничтожна мала, стремиться к нулю, но вероятность выигрыша какого-то одного конкретного билета равна ста процентам. Потому что вероятность выпадения конкретных номеров в конкретном тираже распределена между всеми вариантами не-рав-но-мер-но. Грубо говоря, сто процентов вероятности делится не на всю массу билетов, а на две части – все выигравшие (то есть один, для упрощения) и все проигравшие (все остальные). Таким образом, шанс выиграть есть и у каждого, и ни у кого. Потому что невозможно узнать, КАКОЙ ИМЕННО билет выиграет, но что КАКОЙ-ТО ОДИН билет выиграет, мы знаем заранее (не вдаваясь в детали количества выигравших и условий выигрыша).
В этом месте, как это ни смешно, становится очевидной правота «женской логики», которая утверждает, что вероятность падения метеорита на Красную площадь равна не один к нескольким миллионам, а пятьдесят на пятьдесят – или упадёт или нет.
Видимо, подобного моему мнения придерживался и такой известный математик, как Пуанкаре. «Пуанкаре как-то заметил с сарказмом, что все верят в универсальность нормального распределения: физики верят, потому что думают, что математики доказали его логическую необходимость, а математики верят, так как считают, что физики проверили это лабораторными экспериментами» (Парадокс де Муавра, выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

То есть парадокс лотереи возникает из-за неправильной исходной посылки – распределение вероятности не равномерно в рамках отдельного периода, а изменчиво. И если принять за отдельный период один тираж, то в нём НЕ МОГУТ выпасть ВСЕ возможные варианты, а выпадет только ОДИН. Поэтому противоречивое понимание вероятности исчезает: вероятность выпадения абсолютного большинства вариантов будет равна нулю, и лишь вероятность одного варианта будет равна единице.

В парадоксе лотереи нет противоречивых условий:

1) только один вариант выпадает в конкретном тираже из всех возможных (выигрывает один билет);

2) возможных вариантов намного больше одного.

Следовательно, вероятность ожидания выигрыша только ОДНОГО из всех возможных вариантов (билетов) стремиться к единице, а вероятность ожидания выигрыша ВСЕХ ОСТАВШИХСЯ ОТ ОДНОГО вариантов (билетов) стремиться к нулю.

В парадоксе больших чисел Бернулли тоже нет противоречия:

1) вероятность выпадения одного из возможных вариантов равна половине – 0,5;

2) ожидание изменения вероятности выпадения второго из возможных вариантов после серии выпадений первого меняется.

Следовательно, вероятность события в целом не меняется, то есть сумма вероятностей вариантов остаётся прежней, но в рамках отдельного периода, тем более, если он несравнимо мал по отношению к сумме всех возможных периодов выпадений, вероятность меняется, что и отражается в ожиданиях игроков.

Попробуйте доказать выигравшему крупную сумму, что вероятность этого была бесконечно мала. Тем более, попробуйте это доказать нескольким или тысячам таких людей. Вероятность даже родиться для некоторых была абсолютно мизерной, но, тем не менее, это произошло.
Невозможность выигрыша многие сравнивают с возможностью падения на голову метеорита или удара молнии. Попробуйте доказать, что это невозможно, потому что вероятность этого бесконечна мала, пострадавшим от них. Как, например, женщине, исцелившейся от удара молнии: «Уникальный случай был зафиксирован в сербском городе Сливовица, сообщает портал DELFI. Молния попала в 51-летннюю Наду Акимович, ранее страдавшую аритмией. Однако в результате воздействия мощного разряда электрического тока болезнь прошла» (Удар молнии исцелил женщину/Дни.ру, 23:23 / 10.07.2009, http://www.dni.ru/incidents/2009/7/10/170321.html) – или мальчику из Германии: «…Шанс получить удар метеоритом составляет 1 к ста миллионам… "Сначала я увидел большой огненный шар, а потом неожиданно почувствовал боль в руке".» (В немецкого мальчика попал метеорит/MIGnews.com, 14.06.2009, 02:42,

Таким образом, В ПАРАДОКСЕ ЛОТЕРЕИ НЕТ ПРОТИВОРЕЧИЯ, КАК И В ПАРАДОКСЕ БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ.

01.07.2009 03:00 – 6.30

фото — Гослото, http://www.gosloto.ru/index.php?id=93

Читайте также:  Хаос контроль для windows бесплатно

PS: вероятность появления другой статьи вместо этой была близка к 100 процентам, именно сегодня или в ближайшие дни. Однако этого не произошло. А появление этой статьи в ближайшие недели было вообще близко к нулю. Однако это произошло.

Можно ли выиграть в лотерею? Какие шансы угадать нужное количество чисел и получить джекпот или приз младшей категории? Вероятность выигрыша легко просчитывается, любой желающий может сделать это самостоятельно.

Как вообще считается вероятность выигрыша в лотерею?

Числовые лотереи проводятся по определенным формулам и шансы каждого события (выигрыша той или иной категории) рассчитываются математически. Причем эта вероятность вычисляется для любого нужного значения, будь то «5 из 36», «6 из 45», или «7 из 49» и она не меняется, так как зависит только от общего количества чисел (шаров, номеров) и того, сколько из них надо угадать.

Например, для лотереи «5 из 36» вероятности всегда следующие

  • угадать два числа — 1 : 8
  • угадать три числа — 1 : 81
  • угадать четыре числа — 1 : 2 432
  • угадать пять чисел — 1 : 376 992

Другими словами — если отметить в билете одну комбинацию (5 номеров), то шанс угадать «двойку» всего 1 из 8. А вот «пять» номеров поймать гораздо сложнее, это уже 1 шанс из 376 992. Именно такое (376 тысяч) количество всевозможных комбинаций существует в лотерее «5 из 36» и гарантированно в ней выиграть можно, если только заполнить их все. Правда, сумма выигрыша в этом случае не оправдает вложений: если билет стоит 80 рублей, то отметить все комбинации будет стоить 30 159 360 рублей. Джекпот обычно намного меньше.

В общем, все вероятности давно известны, всего и остается, что их найти или рассчитать самостоятельно, при помощи соответствующих формул.

Для тех, кому искать лень, приведем вероятности выигрыша для основных числовых лотерей Столото — они представлены в этой таблице

Сколько чисел надо угадать шансы в 5 из 36 шансы в 6 из 45 шансы в 7 из 49
2 1:8 1:7
3 1:81 1:45 1:22
4 1:2432 1:733 1:214
5 1:376 992 1:34 808 1:4751
6 1:8 145 060 1:292 179
7 1:85 900 584

Эти же вероятности можно рассчитать самостоятельно при помощи нашего лото-виджета «Расчет вероятности выигрыша» для этого не требуется работать с формулами, надо всего лишь менять исходные значения (числовая формула лотереи и кол-во угадываемых номеров)

Необходимые пояснения

Лото-виджет позволяет рассчитывать вероятности выигрыша для лотерей с одним лототроном (без бонусных шаров) или с двумя лототронами. Также можно просчитать вероятности развернутых ставок

Расчет вероятности для лотерей с одним лототроном (без бонусных шаров)

Используются только первые два поля, в которых числовая формула лотереи, например: — «5 из 36», «6 из 45», «7 из 49». В принципе, можно просчитать почти любую мировую лотерею. Есть только два ограничения: первое значение не должно превышать 30, а второе — 99.

Если в лотерее не используются дополнительные номера*, то после выбора числовой формулы остается нажать кнопку рассчитать и результат готов. Не важно, вероятность какого события вы хотите узнать – выигрыш джекпота, приз второй/третьей категории или просто выяснить, сложно ли угадать 2-3 номера из нужного количества – результат высчитывается почти моментально!

Пример расчета. Вероятность угадать 5 из 36 составляет 1 шанс из 376 992

Примеры. Вероятности выигрыша главного приза для лотерей:
«5 из 36» (Гослото, Россия) – 1:376 922
«6 из 45» (Гослото, Россия; Saturday Lotto, Австралия; Lotto, Австрия) — 1:8 145 060
«6 из 49» (Спортлото, Россия; La Primitiva, Испания; Lotto 6/49, Канада) — 1:13 983 816
«6 из 52» (Super Loto, Украина; Illinois Lotto, США; Mega TOTO, Малазия) — 1:20 358 520
«7 из 49» (Гослото, Россия; Lotto Max, Канада) — 1:85 900 584

Лотереи с двумя лототронами (+ бонусный шар)

Если в лотерее используется два лототрона, то для расчета необходимо заполнить все 4 поля. В первых двух – числовая формула лотереи (5 из 36, 6 из 45 и тд), в третьем и четвертом поле отмечается количество бонусных шаров (x из n). Важно: данный расчет можно использовать только для лотерей с двумя лототронами. Если бонусный шар достается из основного лототрона, то вероятность выигрыша именно этой категории считается по-другому.

* Так как при использовании двух лототронов шанс выигрыша высчитывается перемножением вероятностей друг на друга, то для корректного расчета лотерей с одним лототроном выбор дополнительного номера по умолчанию стоит как 1 из 1, то есть не учитывается .

Примеры. Вероятности выигрыша главного приза для лотерей:
«5 из 36 + 1 из 4» (Гослото, Россия) – 1:1 507 978
«4 из 20 + 4 из 20» (Гослото, Россия) – 1:23 474 025
«6 из 42 + 1 из 10» (Megalot, Украина) – 1:52 457 860
«5 из 50 + 2 из 10» (EuroJackpot) – 1:95 344 200
«5 из 69 + 1 из 26» (Powerball, США) — 1: 292 201 338

Пример расчет. Шанс угадать 4 из 20 дважды (в двух полях) составляет 1 к 23 474 025

Хорошей иллюстрацией сложности игры с двумя лототронами служит лотерея «Гослото «4 из 20». Вероятность угадать 4 числа из 20 в одном поле вполне щадящая, шанс этого — 1 из 4 845. Но, когда угадать надо выиграть оба поля… то вероятность рассчитывается их перемножением. То есть, в данном случае 4 845 умножаем на 4 845, что дает 23 474 025. Так что, простота этой лотереи обманчива, выиграть в ней главный приз сложнее, чем в «6 из 45» или «6 из 49»

Расчет вероятности (развернутые ставки)

В данном случае считается вероятность выигрыша при использовании развернутых ставок. Для примера – если в лотерее 6 из 45, отметить 8 чисел то вероятность выиграть главный приз (6 из 45) составит 1 шанс из 290 895. Пользоваться ли развернутыми ставками – решать вам. С учетом того, что стоимость их получается очень высокая (в данном случае 8 отмеченных чисел это 28 вариантов) стоит знать как это увеличивает шансы на выигрыш. Тем более, что сделать это теперь совсем просто!

Расчет вероятности выигрыша (6 из 45) на примере развернутой ставки (отмечено 8 чисел)

И другие возможности

При помощи нашего виджета можно просчитать вероятность выигрыша и в бинго-лотереях, например, в «Русское лото». Главное, что надо учитывать, это количество ходов, отведенных на наступление выигрыша. Чтобы было понятнее: долгое время в лотерее «Русское лото» джекпот можно было выиграть в том случае если 15 чисел (в одном поле) закрывались за 15 ходов . Вероятность такого события совершенно фантастическая, 1 шанс из 45 795 673 964 460 800 (можете проверить и получить это значение самостоятельно). Именно поэтому, кстати, много лет в лотерее «Русское лото» никто не мог сорвать джекпот, и его распределяли принудительно.

20.03.2016 правила лотереи «Русское лото» были изменены. Джекпот теперь можно выиграть, если 15 чисел (из 30) закрывались за 15 ходов. Получается аналог развернутой ставки — ведь 15 чисел угадываются из 30 имеющихся! А это уже совсем другая вероятность:

Шанс выиграть джекпот (по новым правилам) в лотерее «Русское лото»

И в заключение приведем вероятность выигрыша в лотереях, использующих бонусный шар из основного лототрона (наш виджет такие значения не считает). Из самых известных

Спортлото «6 из 49» (Гослото, Россия), La Primitiva «6 из 49» (Испания)
Категория «5 + бонусный шар»: вероятность 1:2 330 636

SuperEnalotto «6 из 90» (Италия)
Категория «5 + бонусный шар»: вероятность 1:103 769 105

Oz Lotto «7 из 45» (Австралия)
Категория «6 + бонусный шар»: вероятность 1:3 241 401
«5 + 1» — вероятность 1:29 602
«3 +1» — вероятность 1:87

Lotto «6 из 59» (Великобритания)
Категория «5 + 1 бонусный шар»: вероятность 1:7 509 579

Ссылка на основную публикацию
Формула рандома в паскале
Здравствуйте, уважаемые читатели нашего сайта. Сегодня мы рассмотрим две полезные процедуры в паскале - Random и Randomize.И опять я начну...
Фильм про девушку запертую в квартире
От нехватки ли бюджета, по сюжетному ли велению или просто из желания выпендриться, режиссеры время от времени помещают киноперсонажей в...
Фильмы для ipod classic
Хорошо, когда есть возможность удобно устроиться перед широким экраном огромного телевизора, а что делать, когда находишься в дороге и доступа...
Формула расчета мощности конденсатора
Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию. Eмкостная нагрузка в цепи переменного тока за...
Adblock detector