Eg8010 ir2110 схема инвертора на трансформаторе

Eg8010 ir2110 схема инвертора на трансформаторе

В этой теме я попробую собрать данные про EGP1000W и SPWM Board EGS002. И тому подобные платы так как есть и EGP3000W, и вероятно другое подобное.

На китайских сайтах появились платы задающего генератора и силовой части мощного преобразователя напряжения с синусоидальным выходом. К сожалению совершенно непонятно что икак это. Продавцы обещают показать схему и список деталей — после покупки. иначе говоря — предлагают немного непонятную услугу. На этой страничке пытаюсь разобраться со всем этим. И если вы собирали подобный девайс пожалуйста отзывайтесь в комментариях.

Внешний вид плат, силовая часть продается в виде просто платы. Без каких либо элементов.

Внизу товарища продавцы показывают какую-то непонятную осциллограму. Я лично не вижу не амплитуды, ни вообще какой-либо привязки откуда это получено.

Задающий генератор — это плата с тройкой микросхем. продается в уже собранном виде:

SPWM Board EGS002

SPWM Board EGS002

Фото готовых «изделий», использующих источник питания. На одном фото стоит громадный трансформатор:

На другом трансформатор поменьше:

Схемы этих модулей, удалось найти в поисковике. Судя по всему это схема платы:

Схема управляющего модуля из pdf с описанием инвертора

К разъему на управляющем модуле можно включить плату индикации:

На текущий момент не удалось найти — ни одного собранного проекта показанного и работающего, нет списка элементов силового модуля, и не заметил пока схемы подключения LCD модуля. Можете помочь — пишите в комментариях.

Понятное дело — я горячо не рекомендую это заказывать у товарищей китайцев. так как это непонятно. Лучше дождитесь пока хоть кто-то покажет собранный инвертор из этого вот комплекта.

  • EGS002 manual (en) — документация по инвертору на английском.
  • Форум «еталон» — тема по сборке инверторов на указанной плате управления.
  • Еще одна тема, на эту же тему, форум риалстранник.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

11 thoughts on “ Мощный синусоидальный преобразователь EGP1000W и EGS002. ”

Спасибо Михаил, буду пробовать, до сих пор — опасался …

Добрый день.
Данное чудо собираю в данный момент, посмотрим чего получится

Если будете иметь время — подпишитесь на форум, расскажите чего вышло. Я бы потом выложил как, что и почему, чтобы народ не натыкался на кочки.

А более подробно?

Демо-плата EGP1000W от 12В в режиме повышения через большой железный транс точно работает. Недостаток — резисторный датчик тока, многовато мощности тратит. Ну и ключей маловато и дорожки тонковаты, выше 500 Вт с 12В опасно снимать.

Более подробно есть на сайте egmicro, изготовителей этих микросхем.
Там же официальная ссылка на их taobao магазин, после списка PDF для загрузки.
Микрухи бывают 4-х видов a/b/c/d, отличаются алгоритмами работы защит и несовместимостью с чужими LCD экранами, на которые можно нарваться у других («левых») продавцов.
И кондёры на плате EGS002 должны быть керамические или танталовые, никакого попсового алюминия на 25 мкФ — это поздние удешевления и подделки «на тему».

Болгарин Иван Дачев делал 3 кВт 48В инвертор с БЖТ на этих модулях. Всё гуглится и подробно расписано.

а как на выходе получить 25 Гц ? при этом плавно регулировать вручную выходное напряжение от 30В до 100В ?

Собрал очередной инвертор на EGS002 с использованием низкочастотного трансформатора. Питание четыре 190-х аккумулятора (48в.), транс по расчетам намотан около 3кВА. Нагрузку обогреватель 1.5 кВт тянет нормально, нагружал около часа, с аккумуляторов берёт около 30А. На обогревателе 3кВт напряжение просаживается, модуль уходит в защиту от пониженного напряжения на выходе. Надо транс доработать, нет запаса для шим. Если интересно, могу подробнее.

хочу собрать на 30в акумов на бжт интересно что предложить можете по доработке транса

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Быть может, после прочтения этой статьи вам не придётся ставить такие же по размерам радиаторы на транзисторы.
Перевод этой статьи.

Во-первых, в данном переводе могут быть серьёзные проблемы с переводом терминов, я не занимался электротехникой и схемотехникой достаточно, но всё же что-то знаю; также я пытался перевести всё максимально понятно, поэтому не использовал такие понятия, как бутсрепный, МОП-транзистор и т.п. Во-вторых, если орфографически сейчас уже сложно сделать ошибку (хвала текстовым процессорам с указанием ошибок), то ошибку в пунктуации сделать довольно-таки просто.
И вот по этим двум пунктам прошу пинать меня в комментариях как можно сильнее.

Читайте также:  Мегафон трекер как работает

Теперь поговорим уже больше о теме статьи — при всём многообразии статей о построении различных транспортных средств наземного вида (машинок) на МК, на Arduino, на , само проектирование схемы, а тем более схемы подключения двигателя не описывается достаточно подробно. Обычно это выглядит так:
— берём двигатель
— берём компоненты
— подсоединяем компоненты и двигатель
— …
— PROFIT!1!

Но для построения более сложных схем, чем для простого кручения моторчика с ШИМ в одну сторону через L239x, обычно требуется знание о полных мостах (или H-мостах), о полевых транзисторах (или MOSFET), ну и о драйверах для них. Если ничто не ограничивает, то можно использовать для полного моста p-канальные и n-канальные транзисторы, но если двигатель достаточно мощный, то p-канальные транзисторы придётся сначала обвешивать большим количеством радиаторов, потом добавлять кулеры, ну а если совсем их жалко выкидывать, то можно попробовать и другие виды охлаждения, либо просто использовать в схеме лишь n-канальные транзисторы. Но с n-канальными транзисторами есть небольшая проблема — открыть их «по-хорошему» подчас бывает довольно сложно.

Поэтому я искал что-нибудь, что мне поможет с составлением правильной схемы, и я нашёл статью в блоге одного молодого человека, которого зовут Syed Tahmid Mahbub. Этой статьёй я и решил поделится.

Во многих ситуациях мы должны использовать полевые транзисторы как ключи верхнего уровня. Также во многих ситуациях мы должны использовать полевые транзисторы как ключи как и верхнего, так и нижнего уровней. Например, в мостовых схемах. В неполных мостовых схемах у нас есть 1 MOSFET верхнего уровня и 1 MOSFET нижнего уровня. В полных мостовых схемах мы имеем 2 MOSFETа верхнего уровня и 2 MOSFETа нижнего уровня. В таких ситуациях нам понадобится использовать драйвера как высокого, так и низкого уровней вместе. Наиболее распространённым способом управления полевыми транзисторами в таких случаях является использование драйвера ключей нижнего и верхнего уровней для MOSFET. Несомненно, самым популярным микросхемой-драйвером является IR2110. И в этой статье/учебнике я буду говорить о именно о нём.

Вы можете загрузить документацию для IR2110 с сайта IR. Вот ссылка для загрузки: http://www.irf.com/product-info/datasheets/data/ir2110.pdf

Давайте для начала взглянем на блок-схему, а также описание и расположение контактов:


Рисунок 1 — Функциональная блок-схема IR2110


Рисунок 2 — Распиновка IR2110


Рисунок 3 — Описание пинов IR2110

Также стоит упомянуть, что IR2110 выпускается в двух корпусах — в виде 14-контактного PDIP для выводного монтажа и 16-контактного SOIC для поверхностного монтажа.

Теперь поговорим о различных контактах.

VCC — это питание нижнего уровня, должно быть между 10В и 20В. VDD — это логическое питание для IR2110, оно должно быть между +3В и +20В (по отношению к VSS). Фактическое напряжение, которое вы выберете для использования, зависит от уровня напряжения входных сигналов. Вот график:


Рисунок 4 — Зависимость логической 1 от питания

Обычно используется VDD равное +5В. При VDD = +5В, входной порог логической 1 немного выше, чем 3В. Таким образом, когда напряжение VDD = +5В, IR2110 может быть использован для управления нагрузкой, когда вход «1» выше, чем 3 (сколько-то) вольт. Это означает, что IR2110 может быть использован почти для всех схем, так как большинство схем, как правило, имеют питание примерно 5В. Когда вы используете микроконтроллеры, выходное напряжение будет выше, чем 4В (ведь микроконтроллер довольно часто имеет VDD = +5В). Когда используется SG3525 или TL494 или другой ШИМ-контроллер, то, вероятно, придётся их запитывать напряжением большим, чем 10В, значит на выходах будет больше, чем 8В, при логической единице. Таким образом, IR2110 может быть использован практически везде.

Вы также можете снизить VDD примерно до +4В, если используете микроконтроллер или любой чип, который даёт на выходе 3.3В (например, dsPIC33). При проектировании схем с IR2110, я заметил, что иногда схема не работает должным образом, когда VDD у IR2110 был выбран менее + 4В. Поэтому я не рекомендую использовать VDD ниже +4В. В большинстве моих схем уровни сигнала не имеют напряжение меньше, чем 4В как «1», и поэтому я использую VDD = +5V.

Читайте также:  Режим mopier что это

Если по каким-либо причинам в схеме уровень сигнала логической «1» имеет напряжение меньшее, чем 3В, то вам нужно использовать преобразователь уровней/транслятор уровней, он будет поднимать напряжение до приемлемых пределов. В таких ситуациях я рекомендую повышение до 4В или 5В и использование у IR2110 VDD = +5В.

Теперь давайте поговорим о VSS и COM. VSS это земля для логики. COM это «возврат низкого уровня» — в основном, заземление низкого уровня драйвера. Это может выглядеть так, что они являются независимыми, и можно подумать что, пожалуй, было бы возможно изолировать выходы драйвера и сигнальную логику драйвера. Тем не менее, это было бы неправильно. Несмотря на то что внутренне они не связаны, IR2110 является неизолированным драйвером, и это означает, что VSS и COM должны быть оба подключены к земле.

HIN и LIN это логические входы. Высокий сигнал на HIN означает, что мы хотим управлять верхним ключом, то есть на HO осуществляется вывод высокого уровня. Низкий сигнал на HIN означает, что мы хотим отключить MOSFET верхнего уровня, то есть на HO осуществляется вывод низкого уровня. Выход в HO, высокий или низкий, считается не по отношению к земле, а по отношению к VS. Мы скоро увидим, как усилительные схемы (диод + конденсатор), используя VCC, VB и VS, обеспечивают плавающее питания для управления MOSFETом. VS это плавающий возврат питания. При высоком уровне, уровень на HO равен уровню на VB, по отношению к VS. При низком уровне, уровень на HO равнен VS, по отношению к VS, фактически нулю.

Высокий сигнал LIN означает, что мы хотим управлять нижним ключом, то есть на LO осуществляется вывод высокого уровня. Низкий сигнал LIN означает, что мы хотим отключить MOSFET нижнего уровня, то есть на LO осуществляется вывод низкого уровня. Выход в LO считается относительно земли. Когда сигнал высокий, уровень в LO такой же как и в VCC, относительно VSS, фактически земля. Когда сигнал низкий, уровень в LO такой же как и в VSS, относительно VSS, фактически нуль.

SD используется в качестве контроля останова. Когда уровень низкий, IR2110 включен — функция останова отключена. Когда этот вывод является высоким, выходы выключены, отключая управление IR2110.
Теперь давайте взглянем на частые конфигурации с IR2110 для управления MOSFETами как верхних и нижних ключей — на полумостовые схемы.


Рисунок 5 — Базовая схема на IR2110 для управления полумостом

D1, C1 и C2 совместно с IR2110 формируют усилительную цепь. Когда LIN = 1 и Q2 включен, то C1 и С2 заряжаются до уровня VB, так как один диод расположен ниже +VCC. Когда LIN = 0 и HIN = 1, заряд на C1 и С2 используется для добавления дополнительного напряжения, VB в данном случае, выше уровня источника Q1 для управления Q1 в конфигурации верхнего ключа. Достаточно большая ёмкость должна быть выбрана у C1 для того чтобы её хватило для обеспечения необходимого заряда для Q1, чтобы Q1 был включён всё это время. C1 также не должен иметь слишком большую ёмкость, так как процесс заряда будет проходить долго и уровень напряжения не будет увеличиваться в достаточной степени чтобы сохранить MOSFET включённым. Чем большее время требуется во включённом состоянии, тем большая требуется ёмкость. Таким образом меньшая частота требует большую ёмкость C1. Больший коэффициент заполнения требует большую ёмкость C1. Конечно есть формулы для расчёта ёмкости, но для этого нужно знать множество параметров, а некоторые из них мы может не знать, например ток утечки конденсатора. Поэтому я просто оценил примерную ёмкость. Для низких частот, таких как 50Гц, я использую ёмкость от 47мкФ до 68мкФ. Для высоких частот, таких как 30-50кГц, я использую ёмкость от 4.7мкФ до 22мкФ. Так как мы используем электролитический конденсатор, то керамический конденсатор должен быть использован параллельно с этим конденсатором. Керамический конденсатор не обязателен, если усилительный конденсатор — танталовый.

D2 и D3 разряжают затвор MOSFETов быстро, минуя затворные резисторы и уменьшая время отключения. R1 и R2 это токоограничивающие затворные резисторы.

Читайте также:  Как вывести микрофон на рабочий стол

+MOSV может быть максимум 500В.

+VCC должен идти с источника без помех. Вы должны установить фильтрующие и развязочные конденсаторы от +VCC к земле для фильтрации.

Давайте теперь рассмотрим несколько примеров схем с IR2110.


Рисунок 6 — Схема с IR2110 для высоковольтного полумоста


Рисунок 7 — Схема с IR2110 для высоковольтного полного моста с независимым управлением ключами (кликабельно)

На рисунке 7 мы видим IR2110, использованный для управления полным мостом. В ней нет ничего сложного и, я думаю, уже сейчас вы это понимаете. Также тут можно применить достаточно популярное упрощение: HIN1 мы соединяем с LIN2, а HIN2 мы соединяем с LIN1, тем самым мы получаем управление всеми 4 ключами используя всего 2 входных сигнала, вместо 4, это показано на рисунке 8.


Рисунок 8 — Схема с IR2110 для высоковольтного полного моста с управлением ключами двумя входами (кликабельно)


Рисунок 9 — Схема с IR2110 как высоковольтного драйвера верхнего уровня

На рисунке 9 мы видим IR2110 использованный как драйвер верхнего уровня. Схема достаточно проста и имеет такую же функциональность как было описано выше. Есть вещь которую нужно учесть — так как мы больше не имеем ключа нижнего уровня, то должна быть нагрузка подключённая с OUT на землю. Иначе усилительный конденсатор не сможет зарядится.


Рисунок 10 — Схема с IR2110 как драйвера нижнего уровня


Рисунок 11 — Схема с IR2110 как двойного драйвера нижнего уровня

Если у вас проблемы с IR2110 и всё постоянно выходит из строя, горит или взрывается, то я уверен, что это из-за того, что вы не используете резисторы на затвор-исток, при условии, конечно, что вы всё спроектировали тщательно. НИКОГДА НЕ ЗАБЫВАЙТЕ О РЕЗИСТОРАХ НА ЗАТВОР-ИСТОК. Если вам интересно, вы можете прочитать о моем опыте с ними здесь (я также объясняю причину, по которой резисторы предотвращают повреждения): http://tahmidmc.blogspot.com/2012/10/magic-of-knowledge.html

Я видел как на многих форумах, люди бьются с проектированием схем на IR2110. У меня тоже было много трудностей прежде чем я cмог уверенно и последовательно строить успешные схемы драйвера на IR2110. Я попытался объяснить применение и использование IR2110 довольно тщательно, попутно всё объясняя и используя большое количество примеров, и я надеюсь, что это поможет вам в ваших начинаниях с IR2110.

Рождённый с паяльником

Для тех, кто ищет

Конструкция мощного инвертора (идея)

Доброго времени суток!

Вот и я заразился солнечными батареями/ветряками и т.п. Так как опыта у меня практически нет, начал с простого: солнечная батарея+аккумулятор. Теперь хочется собрать инвертор.
Поигрался сначала с готовыми маломощными устройствами, поизучал готовые маломощные инверторы как обычные, так и с чистой синусоидой. Заранее скажу: идея именно в том, что бы собрать ради хобби. Я знаю про хорошие удачные инверторы на рынке. Знаю про их ценник в 12-15 килорублей за описанные ниже характеристики.
Итак, первоначальная идея:
Хочу спалить 100500 полевиков собрать инвертор на 1-1,5 КВт с синусоидой на выходе, для начала из более-менее готовых блоков по известной и обкатанной схеме. Конструкция должна иметь как можно больший КПД, эффективно использовать объём корпуса и быть относительно простой в наладке новичку в силовой технике.

UPD: Спасибо за помощь, идею разобрали и показали её недостатки + посоветовали что почитать/посмотреть. Буду пробовать.

Почитав интернеты идея оформилась в следующее:

Взять EGS002 Driver Board на EG8010 + IR2110 (понравилась за простоту конструкции и наличие драйвера для раскачки затворов), далее на прокладках на радиаторе четыре моста на AUIRF3805 включённых попарно и нагруженных на четыре трансформатора 6,5 В->55 В 400 Вт. Первички трансформаторов раскачиваются независимо каждая своим мостом, вторички соединены последовательно. Питание каждого моста — через свой дроссель. Питание схемы от 12 Вольт (10,5-14). В будущем можно будет легко переделать на 24 В или на 48 Вольт для умощнения схемы, когда будет чуть больше опыта.
Идея с 4 трансформаторами позволит запихать конструкцию в компактный корпус, а относительно небольшой вес каждого из трансформаторов, позволит поставить их вертикально, что улучшит охлаждение на пиковых нагрузках.
Прошу поругать/похвалить.

Ссылка на основную публикацию
Asus k56c установка ssd
Запись сделана для тех, кто собирается делать аналогичный апгрейд своего Asus N56VZ, но безболезненно и без танцев с бубнами. А...
Adblock detector